7 resultados para Saturation (materials composition)

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The two small asteroid-like bodies orbiting Mars, Phobos and Deimos, are low albedo and exhibit similar visible to near-infrared spectra. Determining the origin of these moons is closely tied to determining their composition. From available spectroscopic data Phobos exhibits two distinct types of materials across its surface, and data from both Mars Express and Mars Reconnaissance Orbiter have provided additional details about the properties of these materials and their spatial relation to one another. Although no prominent diagnostic absorptions have been detected, systematic weak features are seen in some data. An extensive regolith is observed to have developed on both moons with characteristics that may be unique due to their special environment in Mars orbit. Understanding the character and evolution of the regolith of Phobos and Deimos is central to interpreting the moons׳ physical and optical properties. The cumulative data available for compositional analyses across the surface of Phobos and Deimos, however, remain incomplete in scope and character and ambiguous in interpretation. Consequently the composition of the moons of Mars remains uncertain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Solar nebula processes led to a depletion of volatile elements in different chondrite groups when compared to the bulk chemical composition of the solar system deduced from the Sun's photosphere. For moderately-volatile elements, this depletion primarily correlates with the element condensation temperature and is possibly caused by incomplete condensation from a hot solar nebula, evaporative loss from the precursor dust, and/or inherited from the interstellar medium. Element concentrations and interelement ratios of volatile elements do not provide a clear picture about responsible mechanisms. Here, the abundance and stable isotope composition of the moderately- to highly-volatile element Se are investigated in carbonaceous, ordinary, and enstatite chondrites to constrain the mechanism responsible for the depletion of volatile elements in planetary bodies of the inner solar system and to define a δ(82/78)Se value for the bulk solar system. The δ(82/78)Se of the studied chondrite falls are identical within their measurement uncertainties with a mean of −0.20±0.26‰ (2 s.d., n=14n=14, relative to NIST SRM 3149) despite Se abundance depletions of up to a factor of 2.5 with respect to the CI group. The absence of resolvable Se isotope fractionation rules out a kinetic Rayleigh-type incomplete condensation of Se from the hot solar nebula or partial kinetic evaporative loss on the precursor material and/or the parent bodies. The Se depletion, if acquired during partial condensation or evaporative loss, therefore must have occurred under near equilibrium conditions to prevent measurable isotope fractionation. Alternatively, the depletion and cooling of the nebula could have occurred simultaneously due to the continuous removal of gas and fine particles by the solar wind accompanied by the quantitative condensation of elements from the pre-depleted gas. In this scenario the condensation of elements does not require equilibrium conditions to avoid isotope fractionation. The results further suggest that the processes causing the high variability of Se concentrations and depletions in ordinary and enstatite chondrites did not involve any measurable isotope fractionation. Different degrees of element depletions and isotope fractionations of the moderately-volatile elements Zn, S, and Se in ordinary and enstatite chondrites indicate that their volatility is controlled by the thermal stabilities of their host phases and not by the condensation temperature under canonical nebular conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Effingen Member is a low-permeability rock unit of Oxfordian age (ca. 160 Ma) that occurs across northern Switzerland. It comprises sandy calcareous marls and (argillaceous) limestones. This report describes the hydrogeochemistry, mineralogy and supporting physical properties of the Effingen Member in three boreholes in the Jura-Südfuss area: Oftringen, Gösgen and Küttigen, where it is 220–240 m thick. The top of the Effingen Member is at 420, 66 and 32 m depths at the three sites. Core materials are available from Oftringen and Gösgen, whereas information from Küttigen is limited to cuttings, in-situ hydrogeological testing and geophysical logging. Hydrogeological boundaries of the Effingen Member vary between locations. Ground-water flows were identified during drilling at the top (Geissberg Member), but not at the base, of the Effingen Member at Oftringen, at the base (Hauptrogenstein Formation) of the Effingen Member at Gösgen, and in a limestone layer (Gerstenhübel unit) within the Effingen Member at Küttigen. The marls and limestones of the Effingen Member have carbonate contents of 46–91 wt.-% and clay-mineral contents of 5–37 wt.-%. Pyrite contents are up to 1.6 wt.-%, but no sulphate minerals were detected by routine analyses. Clay minerals are predominantly mixed-layer illite-smectite, illite and kaolinite, with sporadic traces of chlorite and smectite. Veins filled with calcite ± celestite occur through the Effingen Member at Oftringen but not at Gösgen or Küttigen. They formed at 50–70 ºC from externally derived fluids, probably of Miocene age. Water contents are 0.7–4.2 wt.-%, corresponding to a water-loss porosity range of 1.9–10.8 vol.-%. Specific surface areas, measured by the BET method, are 2–30 m2/g, correlating with clay-mineral contents. Water activity has been measured and yielded surprisingly low values down to 0.8. These cannot be explained by pore-water salinity alone and include other effects, such as changes in the fabric due to stress release or partial saturation. Observed variations in measurements are not fully understood. Cation exchange capacity (CEC) and exchangeable cation populations have been studied by the Ni-en method. CEC, derived from the consumption of the index cation Ni, is 9–99 meq/kgrock at a solid:liquid ratio of 1, correlating with the clay-mineral content. Cation concentrations in Ni-en extract solutions are in the order Na+≥Ca2+>Mg2+>K+>Sr2+. However, the analytical results from the Ni-en extractions have additional contributions from cations originating from pore water and from mineral dissolution reactions that occurred during extraction, and it was not possible to reliably quantify these contributions. Therefore, in-situ cation populations and selectivity coefficients could not be derived. A suite of methods have been used for characterising the chemical compositions of pore waters in the Effingen Member. Advective displacement was used on one sample from each Oftringen and Gösgen and is the only method that produces results that approach complete hydrochemical compositions. Aqueous extraction was used on core samples from these two boreholes and gives data only for Cl- and, in some cases, Br-. Out-diffusion was used on core samples from Oftringen and similarly gives data for Cl- and Br- only. For both aqueous extraction and out-diffusion, reaction of the experimental water with rock affected concentrations of cations, SO42 and alkalinity in experimental solutions. Another method, centrifugation, failed to extract pore water. Stable isotope ratios (δ18O and δ2H) of pore waters in core samples from Oftringen were analysed by the diffusive exchange method and helium contents of pore water in Oftringen samples were extracted for mass spectrometric analysis by quantitative outgassing of preserved core samples. Several lines of evidence indicate that drillcore samples might not have been fully saturated when opened and subsampled in the laboratory. These include comparisons of water-loss porosities with physical porosities, water-activity measurements, and high contents of dissolved gas as inferred from ground-water samples. There is no clear proof of partial saturation and it is unclear whether this might represent in-situ conditions or is due to exsolution of gas due to the pressure release since drilling. Partial saturation would have no impact on the recalculation of pore-water compositions from aqueous extraction experiments using water-loss porosity data. The largest uncertainty in the pore-water Cl- concentrations recalculated from aqueous extraction and out-diffusion experiments is the magnitude of the anion-accessible fraction of water-loss porosity. General experience of clay-mineral rich formations suggests that the anion-accessible porosity fraction is very often about 0.5 and generally in a range of 0.3 to 0.6 and tends to be inversely correlated with clay-mineral contents. Comparisons of the Cl- concentration in pore water obtained by advective displacement with that recalculated from aqueous extraction of an adjacent core sample suggests a fraction of 0.27 for an Oftringen sample, whereas the same procedure for a Gösgen sample suggests a value of 0.64. The former value for anion-accessible porosity fraction is presumed to be unrepresentative given the local mineralogical heterogeneity at that depth. Through-diffusion experiments with HTO and 36Cl- suggest that the anion-accessible porosity fraction in the Effingen Member at Oftringen and Gösgen is around 0.5. This value is proposed as a typical average for rocks of the Effingen Member, bearing in mind that it varies on a local scale in response to the heterogeneity of lithology and pore-space architecture. The substantial uncertainties associated with the approaches to estimating anion-accessible porosity propagate into the calculated values of in-situ pore-water Cl- concentrations. On the basis of aqueous extraction experiments, and using an anion-accessible porosity fraction of 0.5, Cl- concentrations in the Effingen Member at Oftringen reach a maximum of about 14 g/L in the centre. Cl- decreases upwards and downwards from that, forming a curved depth profile. Cl- contents in the Effingen Member at Gösgen increase with depth from about 3.5 g/L to about 14 g/L at the base of the cored profile (which corresponds to the centre of the formation). Out-diffusion experiments were carried out on four samples from Oftringen, distributed through the Effingen Member. Recalculated Cl- concentrations are similar to those from aqueous extraction for 3 out of the 4 samples, and somewhat lower for one sample. Concentrations of other components, i.e. Na+, K+, Ca2+, Mg2+, Sr2+, SO42- and HCO3- cannot be obtained from the aqueous extraction and out-diffusion experimental data because of mineral dissolution and cation exchange reactions during the experiments. Pore-water pH also is not constrained by those extraction experiments. The only experimental approach to obtain complete pore-water compositions for samples from Oftringen and Gösgen is advective displacement of pore water. The sample from Oftringen used for this experiment is from 445 m depth in the upper part of the Effingen Member and gave eluate with 16.5 g/L Cl- whereas aqueous extraction from a nearby sample indicated about 9 g/L Cl-. The sample from Gösgen used for advective displacement is from 123 m depth in the centre of the Effingen Member sequence and gave eluate with about 9 g/L Cl- whereas aqueous extraction gave 11.5 g/L Cl-. In both cases the pore waters have Na-(Ca)-Cl compositions and SO42- concentrations of about 1.1 g/L. The Gösgen sample has a Br/Cl ratio similar to that of sea water, whereas this ratio is lower for the Oftringen sample. Taking account of uncertainties in the applied experimental approaches, it is reasonable to place an upper limit of ca. 20 g/L on Cl- concentration for pore water in the Effingen Member in this area. There are major discrepancies between pore-water SO42- concentrations inferred from aqueous extraction or out-diffusion experiments and those obtained from advective displacement in both the Oftringen and Gösgen cases. A general conclusion is that all or at least part of the discrepancies are attributable to perturbation of the sulphur system and enhancement of SO42- by sulphate mineral dissolution and possibly minor pyrite oxidation during aqueous extraction and out-diffusion. Therefore, data for SO42- calculated from those pore-water sampling methods are considered not to be representative of in-situ conditions. A reference pore-water composition was defined for the Effingen Member in the Jura Südfuss area. It represents the probable upper limits of Cl- contents and corresponding anion and cation concentrations that are reasonably constrained by experimental data. Except for Cl- and possibly Na+ concentrations, this composition is poorly constrained especially with respect to SO42- and Ca2+ concentrations, and pH and alkalinity. Stable isotope compositions, δ18O and δ2H, of pore waters in the Effingen Member at Oftringen plot to the right of the meteoric water line, suggesting that 18O has been enriched by water-rock exchange, which indicates that the pore waters have a long residence time. A long residence time of pore water is supported by the level of dissolved 4He that has accumulated in pore water of the Effingen Member at Oftringen. This is comparable with, or slightly higher than, the amounts of 4He in the Opalinus Clay at Benken. Ground waters were sampled from flowing zones intersected by boreholes at the three locations. The general interpretation is that pore waters and ground-water solutes may have similar origins in Mesozoic and Cenozoic brackish-marine formations waters, but ground-water solutes have been diluted rather more than pore waters by ingress of Tertiary and Quaternary meteoric waters. The available hydrochemical data for pore waters from the Effingen Member at these three locations in the Jura-Südfuss area suggest that the geochemical system evolved slowly over geological periods of time, in which diffusion was an important mechanism of solute transport. The irregularity of Cl- and δ18O profiles and spatial variability of advective ground-water flows in the Malm-Dogger system suggests that palaeohydrogeological and hydrochemical responses to changing tectonic and surface environmental conditions were complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cadmium is a highly volatile element and its abundance in meteorites may help better understand volatility-controlled processes in the solar nebula and on meteorite parent bodies. The large thermal neutron capture cross section of 113Cd suggests that Cd isotopes might be well suited to quantify neutron fluences in extraterrestrial materials. The aims of this study were (1) to evaluate the range and magnitude of Cd concentrations in magmatic iron meteorites, and (2) to assess the potential of Cd isotopes as a neutron dosimeter for iron meteorites. Our new Cd concentration data determined by isotope dilution demonstrate that Cd concentrations in iron meteorites are significantly lower than in some previous studies. In contrast to large systematic variations in the concentration of moderately volatile elements like Ga and Ge, there is neither systematic variation in Cd concentration amongst troilites, nor amongst metal phases of different iron meteorite groups. Instead, Cd is strongly depleted in all iron meteorite groups, implying that the parent bodies accreted well above the condensation temperature of Cd (i.e., ≈650 K) and thus incorporated only minimal amounts of highly volatile elements. No Cd isotope anomalies were found, whereas Pt and W isotope anomalies for the same iron meteorite samples indicate a significant fluence of epithermal and higher energetic neutrons. This observation demonstrates that owing to the high Fe concentrations in iron meteorites, neutron capture mainly occurs at epithermal and higher energies. The combined Cd-Pt-W isotope results from this study thus demonstrate that the relative magnitude of neutron capture-induced isotope anomalies is strongly affected by the chemical composition of the irradiated material. The resulting low fluence of thermal neutrons in iron meteorites and their very low Cd concentrations make Cd isotopes unsuitable as a neutron dosimeter for iron meteorites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep geological storage of radioactive waste foresees cementitious materials as reinforcement of tunnels and as backfill. Bentonite is proposed to enclose spent fuel canisters and as drift seals. Sand/bentonite (s/b) is foreseen as backfill material of access galleries or as drift seals. The emplacement of cementitious material next to clay material generates an enormous chemical gradient in pore-water composition that drives diffusive solute transport. Laboratory studies and reactive transport modeling predicted significant mineral alteration at and near interfaces, mainly resulting in a decrease of porosity in bentonite. The goal of this thesis was to characterize and quantify the cement/bentonite interactions both spatially and temporally in laboratory experiments. A newly developed mobile X-ray transparent core infiltration device was used to perform X-ray computed tomography (CT) scans without interruption of running experiments. CT scans allowed tracking the evolution of the reaction plume and changes in core volume/diameter/density during the experiments. In total 4 core infiltration experiments were carried out for this study with the compacted and saturated cores consisting of MX-80 bentonite and sand/MX-80 bentonite mixture (s/b; 65/35%). Two different high-pH cementitious pore-fluids were infiltrated: a young (early) ordinary Portland cement pore-fluid (APWOPC; K+–Na+–OH-; pH 13.4; ionic strength 0.28 mol/kg) and a young ‘low-pH’ ESDRED shotcrete pore-fluid (APWESDRED; Ca2+–Na+–K+–formate; pH 11.4; ionic strength 0.11 mol/kg). The experiments lasted between 1 and 2 years. In both bentonite experiments, the hydraulic conductivity was strongly reduced after switching to high-pH fluids, changing eventually from an advective to a diffusion-dominated transport regime. The reduction was mainly induced by mineral precipitation and possibly partly also by high ionic strength pore-fluids. Both bentonite cores showed a volume reduction and a resulting transient flow in which pore-water was squeezed out during high-pH infiltration. The outflow chemistry was characterized by a high ionic strength, while chloride in the initial pore water got replaced as main anionic charge carrier by sulfate, originating from gypsum dissolution. The chemistry of the high-pH fluids got strongly buffered by the bentonite, consuming hydroxide and in case of APWESDRED also formate. Hydroxide got consumed by mineral reactions (saponite and possibly talc and brucite precipitation), while formate being affected by bacterial degradation. Post-mortem analysis showed reaction zones near the inlet of the bentonite core, characterized by calcium and magnesium enrichment, consisting predominately of calcite and saponite, respectively. Silica got enriched in the outflow, indicating dissolution of silicate-minerals, identified as preferentially cristobalite. In s/b, infiltration of APWOPC reduced the hydraulic conductivity strongly, while APWESDRED infiltration had no effect. The reduction was mainly induced by mineral precipitation and probably partly also by high ionic strength pore-fluids. Not clear is why the observed mineral precipitates in the APWESDRED experiment had no effect on the fluid flow. Both s/b cores showed a volume expansion along with decreasing ionic strengths of the outflow, due to mineral reactions or in case of APWESDRED infiltration also mediated by microbiological activity, consuming hydroxide and formate, respectively. The chemistry of the high-pH fluids got strongly buffered by the s/b. In the case of APWESDRED infiltration, formate reached the outflow only for a short time, followed by enrichment in acetate, indicating most likely biological activity. This was in agreement to post-mortem analysis of the core, observing black spots on the inflow surface, while the sample had a rotten-egg smell indicative of some sulfate reduction. Post-mortem analysis showed further in both cores a Ca-enrichment in the first 10 mm of the core due to calcite precipitation. Mg-enrichment was only observed in the APWOPC experiment, originating from newly formed saponite. Silica got enriched in the outflow of both experiments, indicating dissolution of silicate-minerals, identified in the OPC experiment as cristobalite. The experiments attested an effective buffering capacity for bentonite and s/b, a progressing coupled hydraulic-chemical sealing process and also the preservation of the physical integrity of the interface region in this setup with a total pressure boundary condition on the core sample. No complete pore-clogging was observed but the hydraulic conductivity got rather strongly reduced in 3 experiments, explained by clogging of the intergranular porosity (macroporosity). Such a drop in hydraulic conductivity may impact the saturation time of the buffer in a nuclear waste repository, although the processes and geometry will be more complex in repository situation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose To investigate whether nonhemodynamic resonant saturation effects can be detected in patients with focal epilepsy by using a phase-cycled stimulus-induced rotary saturation (PC-SIRS) approach with spin-lock (SL) preparation and whether they colocalize with the seizure onset zone and surface interictal epileptiform discharges (IED). Materials and Methods The study was approved by the local ethics committee, and all subjects gave written informed consent. Eight patients with focal epilepsy undergoing presurgical surface and intracranial electroencephalography (EEG) underwent magnetic resonance (MR) imaging at 3 T with a whole-brain PC-SIRS imaging sequence with alternating SL-on and SL-off and two-dimensional echo-planar readout. The power of the SL radiofrequency pulse was set to 120 Hz to sensitize the sequence to high gamma oscillations present in epileptogenic tissue. Phase cycling was applied to capture distributed current orientations. Voxel-wise subtraction of SL-off from SL-on images enabled the separation of T2* effects from rotary saturation effects. The topography of PC-SIRS effects was compared with the seizure onset zone at intracranial EEG and with surface IED-related potentials. Bayesian statistics were used to test whether prior PC-SIRS information could improve IED source reconstruction. Results Nonhemodynamic resonant saturation effects ipsilateral to the seizure onset zone were detected in six of eight patients (concordance rate, 0.75; 95% confidence interval: 0.40, 0.94) by means of the PC-SIRS technique. They were concordant with IED surface negativity in seven of eight patients (0.88; 95% confidence interval: 0.51, 1.00). Including PC-SIRS as prior information improved the evidence of the standard EEG source models compared with the use of uninformed reconstructions (exceedance probability, 0.77 vs 0.12; Wilcoxon test of model evidence, P < .05). Nonhemodynamic resonant saturation effects resolved in patients with favorable postsurgical outcomes, but persisted in patients with postsurgical seizure recurrence. Conclusion Nonhemodynamic resonant saturation effects are detectable during interictal periods with the PC-SIRS approach in patients with epilepsy. The method may be useful for MR imaging-based detection of neuronal currents in a clinical environment. (©) RSNA, 2016 Online supplemental material is available for this article.