35 resultados para Salt marshes
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Nocturnal nondipping is a feature of salt-sensitive, hypertensive individuals. In normotensive children and adults, the impact of salt intake on circadian blood pressure (BP) rhythm is not well defined.
Resumo:
The management of inherited hypokalemia has improved and the issue of pregnancy has become important.
Resumo:
We previously reported that excess of deoxycorticosterone-acetate (DOCA)/salt-induced cardiac hypertrophy in the absence of hypertension in one-renin gene mice. This model allows us to study molecular mechanisms of high-salt intake in the development of cardiovascular remodeling, independently of blood pressure in a high mineralocorticoid state. In this study, we compared the effect of 5-wk low- and high-salt intake on cardiovascular remodeling and cardiac differential gene expression in mice receiving the same amount of DOCA. Differential gene and protein expression was measured by high-density cDNA microarray assays, real-time PCR and Western blot analysis in DOCA-high salt (HS) vs. DOCA-low salt (LS) mice. DOCA-HS mice developed cardiac hypertrophy, coronary perivascular fibrosis, and left ventricular dysfunction. Differential gene and protein expression demonstrated that high-salt intake upregulated a subset of genes encoding for proteins involved in inflammation and extracellular matrix remodeling (e.g., Col3a1, Col1a2, Hmox1, and Lcn2). A major subset of downregulated genes encoded for transcription factors, including myeloid differentiation primary response (MyD) genes. Our data provide some evidence that vascular remodeling, fibrosis, and inflammation are important consequences of a high-salt intake in DOCA mice. Our study suggests that among the different pathogenic factors of cardiac and vascular remodeling, such as hypertension and mineralocorticoid excess and sodium intake, the latter is critical for the development of the profibrotic and proinflammatory phenotype observed in the heart of normotensive DOCA-treated mice.
Resumo:
Besides the kidneys, the gastrointestinal tract is the principal organ responsible for sodium homeostasis. For sodium transport across the cell membranes the epithelial sodium channel (ENaC) is of pivotal relevance. The ENaC is mainly regulated by mineralocorticoid receptor mediated actions. The MR activation by endogenous 11β-hydroxy-glucocorticoids is modulated by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). Here we present evidence for intestinal segment specific 11β-HSD2 expression and hypothesize that a high salt intake and/or uninephrectomy (UNX) affects colonic 11β-HSD2, MR and ENaC expression. The 11β-HSD2 activity was measured by means of 3H-corticosterone conversion into 3H-11-dehydrocorticosterone in Sprague Dawley rats on a normal and high salt diet. The activity increased steadily from the ileum to the distal colon by a factor of about 3, an observation in line with the relevance of the distal colon for sodium handling. High salt intake diminished mRNA and protein of 11β-HSD2 by about 50% (p<0.001) and reduced the expression of the MR (p<0.01). The functionally relevant ENaC-β and ENaC-γ expression, a measure of mineralocorticoid action, diminished by more than 50% by high salt intake (p<0.001). The observed changes were present in rats with and without UNX. Thus, colonic epithelial cells appear to contribute to the protective armamentarium of the mammalian body against salt overload, a mechanism not modulated by UNX.
Resumo:
Potassium-enriched diets exert renal and cardiovascular protective effects, but the underlying mechanisms are largely unknown.
Resumo:
BACKGROUND: The role of albumin on blood pressure response to different salt challenges is not known. Therefore, we studied the blood pressure response of analbuminemic Nagase rats (NAR) to different salt challenges. 11beta-Hydroxysteroid dehydrogenase type 2 (11beta-HSD2), the enzyme regulating the glucocorticoid access to the mineralocorticoid receptor, an enzyme that is decreased in humans with salt sensitive hypertension and other diseases with abnormal renal salt retention, was assessed during salt challenges. METHODS: Blood pressure was measured continuously by an intra-arterial catheter and a telemetry system in NAR (n = 8). NAR were set successively for 7 days on a normal (0.45% NaCl), high (8% NaCl), low (0.1% NaCl) and normal salt diet again, to assess salt related response in mean systolic (SBP) and diastolic blood pressure (DBP). 11beta-HSD2activity was assessed by measuring the urinary (THB + 5alpha-THB)/THA ratio with gas chromatography - mass spectrometry. RESULTS: Mean SBP and DBP increased with high salt intake (normal salt vs. high salt: SBP: 114 +/- 1 vs.119 +/- 3 mm Hg, p < 0.01; DBP: 84 +/- 1 vs. 88 +/- 3 mm Hg; n = 8; p < 0.01). Urinary (THB +5alpha-THB)/THA ratio increased during the high-salt period when compared to the normal-salt period (high salt vs. normal salt: 0.52 +/- 0.10 vs. 0.37 +/- 0.07; p = 0.05) indicating decreased 11beta-HSD2activity. CONCLUSION: Analbuminemic Nagase rats express increased blood pressure and reduced 11beta-HSD2 activity in response to a high-salt diet.
Resumo:
Reduced activity of 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) plays a role in essential hypertension and the sensitivity of blood pressure to dietary salt. Nonconservative mutations in the coding region are extremely rare and do not explain the variable 11beta-HSD2 activity. We focused therefore on the 5'-regulatory region and identified and characterized the first promoter polymorphisms. Transfections of variants G-209A and G-126A into SW620 cells reduced promoter activity and affinity for activators nuclear factor 1 (NF1) and Sp1. Chromatin immunoprecipitation revealed Sp1, NF1, and glucocorticoid receptor (GR) binding to the HSD11B2 promoter. Dexamethasone induced expression of mRNA and activity of HSD11B2. GR and/or NF1 overexpression increased endogenous HSD11B2 mRNA and activity. GR complexes cooperated with NF1 to activate HSD11B2, an effect diminished in the presence of the G-209A variant. When compared to salt-resistant subjects (96), salt-sensitive volunteers (54) more frequently had the G-209A variant, higher occurrence of alleles A4/A7 of polymorphic microsatellite marker, and higher urinary ratios of cortisol to cortisone metabolites. First, we conclude that the mechanism of glucocorticoid-induced HSD11B2 expression is mainly mediated by cooperation between GR and NF1 on the HSD11B2 promoter and, second, that the newly identified promoter variants reduce activity and cooperation of cognate transcription factors, resulting in diminished HSD11B2 transcription, an effect favoring salt sensitivity.
Resumo:
Compromised intrauterine fetal growth leading to low birth weight (<2500 g) is associated with adulthood renal and cardiovascular disease. The aim of this study was to assess the effect of salt intake on blood pressure (salt sensitivity) in children with low birth weight. White children (n=50; mean age: 11.3+/-2.1 years) born with low (n=35) or normal (n=15) birth weight and being either small or appropriate for gestational age (n=25 in each group) were investigated. The glomerular filtration rate was calculated using the Schwartz formula, and renal size was measured by ultrasound. Salt sensitivity was assigned if mean 24-hour blood pressure increased by >or=3 mm Hg on a high-salt diet as compared with a controlled-salt diet. Baseline office blood pressure was higher and glomerular filtration rate lower in children born with low birth weight as compared with children born at term with appropriate weight (P<0.05). Salt sensitivity was present in 37% and 47% of all of the low birth weight and small for gestational age children, respectively, higher even than healthy young adults from the same region. Kidney length and volume (both P<0.0001) were reduced in low birth weight children. Salt sensitivity inversely correlated with kidney length (r(2)=0.31; P=0.005) but not with glomerular filtration rate. We conclude that a reduced renal mass in growth-restricted children poses a risk for a lower renal function and for increased salt sensitivity. Whether the changes in renal growth are causative or are the consequence of the same abnormal "fetal programming" awaits clarification.