17 resultados para Salt and brackish water
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
PURPOSE Hyponatremia is frequently observed in intensive care unit (ICU) patients, but there is still lack information on the physiological mechanisms of development. MATERIALS AND METHODS In this retrospective analysis we performed tonicity balances in 54 patients with ICU acquired hyponatremia. We calculated fluid and solute in and outputs during 24 hours in 106 patient days with decreasing serum-sodium levels. RESULTS We could observe a positive fluid balance as a single reason for hyponatremia in 25% of patients and a negative solute balance in 57%. In 18% both factors contributed to the decrease in serum-sodium. Hyponatremic patients had renal water retention, measured by electrolyte free water clearance calculation in 79% and positive input of free water in 67% as reasons for decline of serum-sodium. The theoretical change of serum sodium during 24 hours according to the calculations of measured balances correlated well with the real change of serum sodium (r = 0.78, P < .01). CONCLUSIONS Balance studies showed that renal water retention together with renal sodium loss and high electrolyte free water input are the major contributors to the development of hyponatremia. Control of renal water and sodium handling by urine analysis may contribute to a better fluid management in the ICU population.
Resumo:
A successful pregnancy requires an accommodating environment. Salt and water availability are critical for plasma volume expansion. Any changes in sodium intake would alter aldosterone, a hormone previously described beneficial in pregnancy. To date, it remains ambiguous whether high aldosterone or high salt intake is preferable. We hypothesized that increased aldosterone is a rescue mechanism and appropriate salt availability is equally effective in maintaining a normotensive blood pressure (BP) phenotype in pregnancy. We compared normotensive pregnant women (n=31) throughout pregnancy with young healthy female individuals (n=31–62) and performed salt sensitivity testing within the first trimester. Suppression of urinary tetrahydro-aldosterone levels by salt intake as measured by gas chromatography–mass spectrometry and urinary sodium excretion corrected for creatinine, respectively, was shifted toward a higher salt intake in pregnancy (P<0.0001). In pregnancy, neither high urinary tetrahydro-aldosterone nor sodium excretion was correlated with higher BP. In contrast, in nonpregnant women, systolic BP rose with aldosterone (P<0.05). Testing the impact of salt on BP, we performed salt sensitivity testing in a final cohort of 19 pregnant and 24 nonpregnant women. On salt loading, 24-hour mean arterial pressure rose by 3.6±1.5 and dropped by –2.8±1.5 mm Hg favoring pregnant women (P<0.01; χ2=6.04; P<0.02). Our data suggest first that salt responsiveness of aldosterone is alleviated in conditions of pregnancy without causing aldosterone-induced hypertension. Second, salt seems to aid in BP lowering in pregnancy for reasons incompletely elucidated, yet involving renin suppression and potentially placental sensing mechanisms. Further research should identify susceptible individuals and clarify effector mechanisms.
Resumo:
http://www.sciencedirect.com/science/article/pii/S0045653510008891
Resumo:
Glaciers all over the world are expected to continue to retreat due to the global warming throughout the 21st century. Consequently, future seasonal water availability might become scarce once glacier areas have declined below a certain threshold affecting future water management strategies. Particular attention should be paid to glaciers located in a karstic environment, as parts of the meltwater can be drained by underlying karst systems, making it difficult to assess water availability. In this study tracer experiments, karst modeling and glacier melt modeling are combined in order to identify flow paths in a high alpine, glacierized, karstic environment (Glacier de la Plaine Morte, Switzerland) and to investigate current and predict future downstream water availability. Flow paths through the karst underground were determined with natural and fluorescent tracers. Subsequently, geologic information and the findings from tracer experiments were assembled in a karst model. Finally, glacier melt projections driven with a climate scenario were performed to discuss future water availability in the area surrounding the glacier. The results suggest that during late summer glacier meltwater is rapidly drained through well-developed channels at the glacier bottom to the north of the glacier, while during low flow season meltwater enters into the karst and is drained to the south. Climate change projections with the glacier melt model reveal that by the end of the century glacier melt will be significantly reduced in the summer, jeopardizing water availability in glacier-fed karst springs.
Resumo:
The efficacy and tolerance of a novel microbial 6-phytase were investigated in rainbow trout, Oncorhynchus mykiss, and Nile tilapia, Oreochromis niloticus. Reference diets were sufficient in available phosphorus (P). The test diet limiting in available P was supplemented with phytase at 500, 1000, or 2000 phytase units/kg feed. The enzyme was effective in increasing total P apparent digestibility coefficient in relation to increasing the dose of phytase in rainbow trout and Nile tilapia. Zinc apparent digestibility improved in relation to phytase supplementation in rainbow trout. P release due to phytase supplementation ranged from 0.06 to 0.18% P/kg feed in rainbow trout and from 0.13 to 0.26% P/kg feed in Nile tilapia. A 58-d performance trial was conducted to evaluate tolerance of fish to phytase supplementation. Dietary treatments consisted of a basal diet without phytase or supplemented with 2000 and 200,000 phytase units/kg feed. Results indicate that this novel microbial 6-phytase is well tolerated by fish. Significant improvements for growth as well as feed conversion ratio were observed when the phytase was fed at 2000 phytase units/kg feed. This phytase is proven efficient in releasing P from phytate and could be added when plants are used for fish meal replacement in diets for salmonid and omnivorous fish.
Resumo:
Can the concept of water as a socio-natural hybrid and the analysis of different users’ perceptions of water advance the study of water sustainability? In this article, I explore this question by empirically studying sustainability values and challenges, as well as distinct types of water as identified by members of five water user groups in a case study region in the Swiss Alps. Linking the concept of water as a socio-natural hybrid with the different water users’ perspectives provided valuable insights into the complex relations between material, cultural, and discursive practices. In particular, it provided a clearer picture of existing water sustainability challenges and the factors and processes that hinder more sustainable outcomes. However, by focusing on relational processes and individual stakeholder perspectives, only a limited knowledge could be created regarding a) what a more sustainable water future would look like and b) how current unsustainable practices can be effectively transformed into more sustainable ones. I conclude by arguing that the concept of water as a socio-natural hybrid provides an interesting analytical tool for investigating sustainability questions; however, if it is to contribute to water sustainability, it needs to be integrated into a broader transdisciplinary research perspective that understands science as part of a deliberative and reflective process of knowledge co-production and social learning between all actor groups involved.