30 resultados para Saccharomyces cerevisiae YM4271

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mannan-binding lectin (MBL) and ficolins are microbial pattern recognition molecules that activate the lectin pathway of complement. We previously reported the association of MBL deficiency with anti-Saccharomyces cerevisiae antibodies (ASCA) in patients with Crohn's disease (CD). However, ASCA are also frequently found in MBL-proficient CD patients. Here we addressed expression/function of ficolins and MBL-associated serine protease-2 (MASP-2) regarding potential association with ASCA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Homeopathic potencies are used as specific remedies in complementary medicine. Since the mode of action is unknown, the presumed specificity is discussed controversially. OBJECTIVE: This study investigated the effects of potentised substances on two yeast species, Saccharomyces cerevisiae and Schizosaccharomyces pombe, in a stable and reliable test system with systematic negative controls. MATERIALS AND METHODS: Yeast cells were cultivated in either potentised substances or water controls in microplates and their growth kinetics were measured photometrically. Water control runs were performed repeatedly to investigate the stability of the experimental set-up (systematic negative controls). RESULTS: 4 out of 14 screened substances seem to have affected the growth curve parameters slope or yield. Out of these substances, azoxystrobin and phosphorus were chosen for 8 further replication experiments, which partly confirmed the results of the screening. On the average of all experiments, azoxystrobin affected the slope of the growth curve of Saccharomyces cerevisiae (p < 0.05), and phosphorus affected the slope of the growth curve of Schizosaccharomyces pombe (p < 0.05). No effects were seen in the water control runs. In addition, significant interactions between treatment with potentised substances and experiment number were observed in all experiments with potentised substances (p < 0.01), but not in the water control runs. CONCLUSIONS: Both yeast species reacted to certain potentised substances by changing their growth kinetics. However, the interactions found point to additional factors of still unknown nature, that modulate the effects of potentised substances. This stable test system with yeasts may be suitable for further studies regarding the efficacy of homeopathic potencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: To test whether humoral immune reaction against mycobacteria may play a role in anti-Saccharomyces cerevisiae antibodies (ASCA) generation in Crohn's disease (CD) and/or whether it correlates with clinical subtypes. METHODS: The dominant ASCA epitope was detected by Galanthus nivalis lectin (GNL)-binding assay. ASCA and IgG against mycobacterial lysates (M avium, M smegmatis, M chelonae, M bovis BCG, M avium ssp. paratuberculosis (MAP)] or purified lipoarabinomannans (LAM) were detected by ELISA. ASCA and anti-mycobacterial antibodies were affinity purified to assess cross-reactivities. Anti-mycobacterial IgG were induced by BCG-infection of mice. RESULTS: GNL bound to different extents to mycobacterial lysates, abundantly to purified mannose-capped (Man) LAM from M tuberculosis, but not to uncapped LAM from M smegmatis. Fifteen to 45% of CD patients but only 0%-6% of controls were seropositive against different mycobacterial antigens. Anti-mycobacterial IgG correlated with ASCA (r = 0.37-0.64; P = 0.003-P < 0.001). ASCA-positivity and deficiency for mannan-binding lectin synergistically associated with anti-mycobacterial IgG. In some patients, anti-mycobacterial antibodies represent cross-reactive ASCA. Vice-versa, the predominant fraction of ASCA did not cross-react with mycobacteria. Finally, fistulizing disease associated with antibodies against M avium, M smegmatis and MAP (P = 0.024, 0.004 and 0.045, respectively). CONCLUSION: Similar to ASCA, seroreactivity against mycobacteria may define CD patients with complicated disease and a predisposition for immune responses against ubiquitous antigens. While in some patients anti-mycobacterial antibodies strongly cross-react with yeast mannan; these cross-reactive antibodies only represent a minor fraction of total ASCA. Thus, mycobacterial infection unlikely plays a role in ASCA induction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbohydrate-deficient glycoprotein syndrome (CDGS) represents a class of genetic diseases characterized by abnormal N-linked glycosylation. CDGS patients show a large number of glycoprotein abnormalities resulting in dysmorphy, encephalopathy, and other organ disorders. The majority of CDGSs described to date are related to an impaired biosynthesis of dolichyl pyrophosphate-linked Glc3Man9GlcNAc2 in the endoplasmic reticulum. Recently, we identified in four related patients a novel type of CDGS characterized by an accumulation of dolichyl pyrophosphate-linked Man9GlcNAc2. Elaborating on the analogy of this finding with the phenotype of alg5 and alg6 Saccharomyces cerevisiae strains, we have cloned and analyzed the human orthologs to the ALG5 dolichyl phosphate glucosyltransferase and ALG6 dolichyl pyrophosphate Man9GlcNAc2 alpha1,3-glucosyltransferase in four novel CDGS patients. Although ALG5 was not altered in the patients, a C-->T transition was detected in ALG6 cDNA of all four CDGS patients. The mutation cosegregated with the disease in a Mendelian recessive manner. Expression of the human ALG5 and ALG6 cDNA could partially complement the respective S. cerevisiae alg5 and alg6 deficiency. By contrast, the mutant ALG6 cDNA of CDGS patients failed to revert the hypoglycosylation observed in alg6 yeasts, thereby proving a functional relationship between the alanine to valine substitution introduced by the C-->T transition and the CDGS phenotype. The mutation in the ALG6 alpha1,3-glucosyltransferase gene defines an additional type of CDGS, which we propose to refer to as CDGS type-Ic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Crohn's disease (CD) the deficiency of mannan-binding lectin (MBL) is associated with an increased prevalence of anti-Saccharomyces cerevisiae antibodies (ASCA) and with complicated phenotypes of the disease. However, the role of MBL in intestinal inflammation is currently unclear. A study was undertaken to analyse local MBL expression in human intestine and the consequences of MBL deficiency in experimental colitis and yeast infection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Leishmania represent a complex of important human pathogens that belong to the systematic order of the kinetoplastida. They are transmitted between their human and mammalian hosts by different bloodsucking sandfly vectors. In their hosts, the Leishmania undergo several differentiation steps, and their coordination and optimization crucially depend on numerous interactions between the parasites and the physiological environment presented by the fly and human hosts. Little is still known about the signalling networks involved in these functions. In an attempt to better understand the role of cyclic nucleotide signalling in Leishmania differentiation and host-parasite interaction, we here present an initial study on the cyclic nucleotide-specific phosphodiesterases of Leishmania major. Results This paper presents the identification of three class I cyclic-nucleotide-specific phosphodiesterases (PDEs) from L. major, PDEs whose catalytic domains exhibit considerable sequence conservation with, among other, all eleven human PDE families. In contrast to other protozoa such as Dictyostelium, or fungi such as Saccharomyces cerevisiae, Candida ssp or Neurospora, no genes for class II PDEs were found in the Leishmania genomes. LmjPDEA contains a class I catalytic domain at the C-terminus of the polypeptide, with no other discernible functional domains elsewhere. LmjPDEB1 and LmjPDEB2 are coded for by closely related, tandemly linked genes on chromosome 15. Both PDEs contain two GAF domains in their N-terminal region, and their almost identical catalytic domains are located at the C-terminus of the polypeptide. LmjPDEA, LmjPDEB1 and LmjPDEB2 were further characterized by functional complementation in a PDE-deficient S. cerevisiae strain. All three enzymes conferred complementation, demonstrating that all three can hydrolyze cAMP. Recombinant LmjPDEB1 and LmjPDEB2 were shown to be cAMP-specific, with Km values in the low micromolar range. Several PDE inhibitors were found to be active against these PDEs in vitro, and to inhibit cell proliferation. Conclusion The genome of L. major contains only PDE genes that are predicted to code for class I PDEs, and none for class II PDEs. This is more similar to what is found in higher eukaryotes than it is to the situation in Dictyostelium or the fungi that concomitantly express class I and class II PDEs. Functional complementation demonstrated that LmjPDEA, LmjPDEB1 and LmjPDEB2 are capable of hydrolyzing cAMP. In vitro studies with recombinant LmjPDEB1 and LmjPDEB2 confirmed this, and they demonstrated that both are completely cAMP-specific. Both enzymes are inhibited by several commercially available PDE inhibitors. The observation that these inhibitors also interfere with cell growth in culture indicates that inhibition of the PDEs is fatal for the cell, suggesting an important role of cAMP signalling for the maintenance of cellular integrity and proliferation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The 5' cap structure of trypanosomatid mRNAs, denoted cap 4, is a complex structure that contains unusual modifications on the first four nucleotides. We examined the four eukaryotic initiation factor 4E (eIF4E) homologues found in the Leishmania genome database. These proteins, denoted LeishIF4E-1 to LeishIF4E-4, are located in the cytoplasm. They show only a limited degree of sequence homology with known eIF4E isoforms and among themselves. However, computerized structure prediction suggests that the cap-binding pocket is conserved in each of the homologues, as confirmed by binding assays to m(7)GTP, cap 4, and its intermediates. LeishIF4E-1 and LeishIF4E-4 each bind m(7)GTP and cap 4 comparably well, and only these two proteins could interact with the mammalian eIF4E binding protein 4EBP1, though with different efficiencies. 4EBP1 is a translation repressor that competes with eIF4G for the same residues on eIF4E; thus, LeishIF4E-1 and LeishIF4E-4 are reasonable candidates for serving as translation factors. LeishIF4E-1 is more abundant in amastigotes and also contains a typical 3' untranslated region element that is found in amastigote-specific genes. LeishIF4E-2 bound mainly to cap 4 and comigrated with polysomal fractions on sucrose gradients. Since the consensus eIF4E is usually found in 48S complexes, LeishIF4E-2 could possibly be associated with the stabilization of trypanosomatid polysomes. LeishIF4E-3 bound mainly m(7)GTP, excluding its involvement in the translation of cap 4-protected mRNAs. It comigrates with 80S complexes which are resistant to micrococcal nuclease, but its function is yet unknown. None of the isoforms can functionally complement the Saccharomyces cerevisiae eIF4E, indicating that despite their structural conservation, they are considerably diverged.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trypanosoma brucei encodes a relatively high number of genes of the equilibrative nucleoside transporter (ENT) family. We report here the cloning and in-depth characterization of one T. brucei brucei ENT member, TbNT9/AT-D. This transporter was expressed in Saccharomyces cerevisiae and displayed a uniquely high affinity for adenosine (Km = 0.068 +/- 0.013 microM), as well as broader selectivity for other purine nucleosides in the low micromolar range, but was not inhibited by nucleobases or pyrimidines. This selectivity profile is consistent with the P1 transport activity observed previously in procyclic and long-slender bloodstream T. brucei, apart from the 40-fold higher affinity for adenosine than for inosine. We found that, like the previously investigated P1 activity of long/slender bloodstream trypanosomes, the 3'-hydroxy, 5'-hydroxy, N3, and N7 functional groups contribute to transporter binding. In addition, we show that the 6-position amine group of adenosine, but not the inosine 6-keto group, makes a major contribution to binding (DeltaG0 = 12 kJ/mol), explaining the different Km values of the purine nucleosides. We further found that P1 activity in procyclic and long-slender trypanosomes is pharmacologically distinct, and we identified the main gene encoding this activity in procyclic cells as NT10/AT-B. The presence of multiple P1-type nucleoside transport activities in T. brucei brucei facilitates the development of nucleoside-based treatments for African trypanosomiasis and would delay the onset of uptake-related drug resistance to such therapy. We show that both TbNT9/AT-D and NT10/AT-B transport a range of potentially therapeutic nucleoside analogs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glycosylphosphatidylinositol (GPI) lipids of Trypanosoma brucei undergo lipid remodelling, whereby longer fatty acids on the glycerol are replaced by myristate (C14:0). A similar process occurs on GPI proteins of Saccharomyces cerevisiae where Per1p first deacylates, Gup1p subsequently reacylates the anchor lipid, thus replacing a shorter fatty acid by C26:0. Heterologous expression of the GUP1 homologue of T. brucei in gup1Delta yeast cells partially normalizes the gup1Delta phenotype and restores the transfer of labelled fatty acids from Coenzyme A to lyso-GPI proteins in a newly developed microsomal assay. In this assay, the Gup1p from T. brucei (tbGup1p) strongly prefers C14:0 and C12:0 over C16:0 and C18:0, whereas yeast Gup1p strongly prefers C16:0 and C18:0. This acyl specificity of tbGup1p closely matches the reported specificity of the reacylation of free lyso-GPI lipids in microsomes of T. brucei. Depletion of tbGup1p in trypanosomes by RNAi drastically reduces the rate of myristate incorporation into the sn-2 position of lyso-GPI lipids. Thus, tbGup1p is involved in the addition of myristate to sn-2 during GPI remodelling in T. brucei and can account for the fatty acid specificity of this process. tbGup1p can act on GPI proteins as well as on GPI lipids.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the several possible causes of irritable bowel syndrome (IBS) is thought to be low-grade mucosal inflammation. Flagellin, the primary structural component of bacterial flagellae, was shown in inflammatory bowel disease patients to activate the innate and adaptive immunity. It has not yet been conclusively established if IBS patients show reactivity to luminal antigens. In 266 patients [112 IBS, 61 Crohn's disease (CD), 50 ulcerative colitis (UC) and 43 healthy controls (HC)], we measured antibodies to flagellin (FAB, types A4-Fla2 and Fla-X), anti-Saccharomyces cerevisiae antibodies (ASCA) (both ELISA), antipancreas antibodies (PAB) and perinuclear antineutrophil cytoplasmatic antibodies (p-ANCA) (both IF). All IBS patients had normal fecal calprotectin (mean 21 microg mL(-1), SD 6.6) and fulfilled the ROME II criteria. Frequencies of antibodies in patients with IBS, CD, UC and HC, respectively, are as follows (in per cent): antibodies against A4-Fla2: 29/48/8/7; antibodies against Fla-X: 26/52/10/7; ASCA: 6/59/0/2; p-ANCA: 0/10/52/0; and PAB: 0/28/0/0. Antibodies against A4-Fla2 and Fla-X were significantly more frequent in IBS patients than in HC (P = 0.004 and P = 0.009). Antibodies to A4-Fla2 and Fla-X were significantly more frequent in IBS patients with antecedent gastroenteritis compared to non-postinfectious IBS patients (P = 0.002 and P = 0.012). In contrast to ASCA, PAB and p-ANCA, antibodies against A4-Fla2 and Fla-X were found significantly more often in IBS patients, particularly in those with postinfectious IBS, compared to HC. This observation supports the concept that immune reactivity to luminal antigens has a putative role in the development of IBS, at least in a subset of patients.