5 resultados para SYNDROME FAMILIES
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Bernard-Soulier syndrome (BSS) is an extremely rare hereditary bleeding disorder, caused by mutations occurring in the Glycoprotein (GP) Ibalpha, GPIbbeta and GP9 genes that encode for the corresponding subunits of platelet GPIb-V-IX adhesion receptor complex. BSS has been reported in many populations, mostly behaving in an autosomal-recessive manner.While the great majority of BSS mutations are unique to a single individual or family, the GP9 1828A>G Asn45Ser mutation, which we have identified in an undocumented Australian Caucasian, has already been reported in multiple unrelated Caucasian families from various Northern and Central European countries. Haplotype analysis of 19 BSS patients from 15 unrelated Northern European families (including 2 compound heterozygote siblings from a British family previously published, and 17 1828A>G Asn45Ser homozygotes), showed that 14 of these BSS patients from 11 of the 1828A>G Asn45Ser homozygote families share a common haplotype at the chromosomal region 3' to the GP9 gene. Hence, the results suggest that the GP9 1828A>GAsn45Ser mutation in these families is ancient, and its frequent emergence in the European population is the result of a founder effect rather than recurrent mutational events. Association of the 1828A>G Asn45Ser mutation with variant haplotypes in 4 other Northern European BSS families raised the possibility of a second founder event, or rare recombinations in these families. Additional members from these 'atypical' lineages would need to be screened to resolve this question.
Resumo:
Very recently, heterozygous mutations in the genes encoding transforming growth factor beta receptors I (TGFBR1) and II (TGFBR2) have been reported in Loeys-Dietz aortic aneurysm syndrome (LDS). In addition, dominant TGFBR2 mutations have been identified in Marfan syndrome type 2 (MFS2) and familial thoracic aortic aneurysms and dissections (TAAD). In the past, mutations of these genes were associated with atherosclerosis and several human cancers. Here, we report a total of nine novel and one known heterozygous sequence variants in the TGFBR1 and TGFBR2 genes in nine of 70 unrelated individuals with MFS-like phenotypes who previously tested negative for mutations in the gene encoding the extracellular matrix protein fibrillin-1 (FBN1). To assess the pathogenic impact of these sequence variants, in silico analyses were performed by the PolyPhen, SIFT, and Fold-X algorithms and by means of a 3D homology model of the TGFBR2 kinase domain. Our results showed that in all but one of the patients the pathogenic effect of at least one sequence variant is highly probable (c.722C > T, c.799A > C, and c.1460G > A in TGFBR1 and c.773T > G, c.1106G > T, c.1159G > A, c.1181G > A, and c.1561T > C in TGFBR2). These deleterious alleles occurred de novo or segregated with the disease in the families, indicating a causative association between the sequence variants and clinical phenotypes. Since TGFBR2 mutations found in patients with MFS-related disorders cannot be distinguished from heterozygous TGFBR2 mutations reported in tumor samples, we emphasize the importance of segregation analysis in affected families. In order to be able to find the mutation that is indeed responsible for a MFS-related phenotype, we also propose that genetic testing for sequence alterations in TGFBR1 and TGFBR2 should be complemented by mutation screening of the FBN1 gene.
Resumo:
BACKGROUND: Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease that constitutes the most common genetic cause of renal failure in the first three decades of life. Using positional cloning, six genes (NPHP1-6) have been identified as mutated in NPHP. In Joubert syndrome (JBTS), NPHP may be associated with cerebellar vermis aplasia/hypoplasia, retinal degeneration and mental retardation. In Senior-Løken syndrome (SLSN), NPHP is associated with retinal degeneration. Recently, mutations in NPHP6/CEP290 were identified as a new cause of JBTS. METHODS: Mutational analysis was performed on a worldwide cohort of 75 families with SLSN, 99 families with JBTS and 21 families with isolated nephronophthisis. RESULTS: Six novel and six known truncating mutations, one known missense mutation and one novel 3 bp pair in-frame deletion were identified in a total of seven families with JBTS, two families with SLSN and one family with isolated NPHP.
Resumo:
Oral-facial-digital type VI syndrome (OFDVI) is a rare phenotype of Joubert syndrome (JS). Recently, C5orf42 was suggested as the major OFDVI gene, being mutated in 9 of 11 families (82 %). We sequenced C5orf42 in 313 JS probands and identified mutations in 28 (8.9 %), most with a phenotype of pure JS. Only 2 out of 17 OFDVI patients (11.7 %) were mutated. A comparison of mutated vs. non-mutated OFDVI patients showed that preaxial and mesoaxial polydactyly, hypothalamic hamartoma and other congenital defects may predict C5orf42 mutations, while tongue hamartomas are more common in negative patients.
Resumo:
BACKGROUND Eosinophilic esophagitis (EoE) is a rapidly emerging, chronic inflammatory, genetically impacted disease of the esophagus, defined clinically by symptoms of esophageal dysfunction and, pathologically, by an eosinophil-predominant tissue infiltration. However, in four EoE-families, we have identified patients presenting with EoE-typical and corticosteroid-responsive symptoms, but without tissue eosinophilia. It was the aim of this study to clinically and immunologically characterize these patients with EoE-like disease. METHODS Five patients suffering from an EoE-like disease were evaluated with endoscopic, histologic, functional and quantitative immunohistologic examinations, and mRNA expression determination. RESULTS The frequency of first generation offspring of EoE-like disease patients affected by EoE or EoE-like disease was 40%. Immunofluorescence analysis confirmed an almost complete absence of eosinophils in the esophageal tissues of patients with EoE-like disease, but revealed a considerable T cell infiltration, comparable to EoE. In contrast to EoE, eotaxin-3 mRNA and protein were markedly reduced in EoE-like disease (P < 0.05). The mRNA expression levels of three selected EoE genes (eotaxin-3, MUC4 and CDH26) allowed to discriminate between EoE-like disease, EoE and normal epithelium. CONCLUSIONS Patients suffering from "EoE without eosinophilia" do not fulfill formally the diagnostic criteria for EoE. However, their clinical manifestation, immunohistology and gene-expression pattern, plus the fact that they bequeath EoE to their offspring, suggest a uniform underlying pathogenesis. Conventional EoE, with its prominent eosinophilia, therefore appears to be only one phenotype of a broader "inflammatory dysphagia syndrome" spectrum. In this light, the role of the eosinophils, the definition of EoE, and its diagnostic criteria must likely be reconsidered. This article is protected by copyright. All rights reserved.