52 resultados para SYNAPTIC CONNECTIVITY

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The striatum, the major input nucleus of the basal ganglia, is numerically dominated by a single class of principal neurons, the GABAergic spiny projection neuron (SPN) that has been extensively studied both in vitro and in vivo. Much less is known about the sparsely distributed interneurons, principally the cholinergic interneuron (CIN) and the GABAergic fast-spiking interneuron (FSI). Here, we summarize results from two recent studies on these interneurons where we used in vivo intracellular recording techniques in urethane-anaesthetized rats (Schulz et al., J Neurosci 31[31], 2011; J Physiol, in press). Interneurons were identified by their characteristic responses to intracellular current steps and spike waveforms. Spontaneous spiking contained a high proportion (~45%) of short inter-spike intervals (ISI) of <30 ms in FSIs, but virtually none in CINs. Spiking patterns in CINs covered a broad spectrum ranging from regular tonic spiking to phasic activity despite very similar unimodal membrane potential distributions across neurons. In general, phasic spiking activity occurred in phase with the slow ECoG waves, whereas CINs exhibiting tonic regular spiking were little affected by afferent network activity. In contrast, FSIs exhibited transitions between Down and Up states very similar to SPNs. Compared to SPNs, the FSI Up state membrane potential was noisier and power spectra exhibited significantly larger power at frequencies in the gamma range (55-95 Hz). Cortical-evoked inputs had faster dynamics in FSIs than SPNs and the membrane potential preceding spontaneous spike discharge exhibited short and steep trajectories, suggesting that fast input components controlled spike output in FSIs. Intrinsic resonance mechanisms may have further enhanced the sensitivity of FSIs to fast oscillatory inputs. Induction of an activated ECoG state by local ejection of bicuculline into the superior colliculus, resulted in increased spike frequency in both interneuron classes without changing the overall distribution of ISIs. This manipulation also made CINs responsive to a light flashed into the contralateral eye. Typically, the response consisted of an excitation at short latency followed by a pause in spike firing, via an underlying depolarization-hyperpolarization membrane sequence. These results highlight the differential sensitivity of striatal interneurons to afferent synaptic signals and support a model where CINs modulate the striatal network in response to salient sensory bottom-up signals, while FSIs serve gating of top-down signals from the cortex during action selection and reward-related learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep brain stimulation (DBS) for Parkinson's disease often alleviates the motor symptoms, but causes cognitive and emotional side effects in a substantial number of cases. Identification of the motor part of the subthalamic nucleus (STN) as part of the presurgical workup could minimize these adverse effects. In this study, we assessed the STN's connectivity to motor, associative, and limbic brain areas, based on structural and functional connectivity analysis of volunteer data. For the structural connectivity, we used streamline counts derived from HARDI fiber tracking. The resulting tracks supported the existence of the so-called "hyperdirect" pathway in humans. Furthermore, we determined the connectivity of each STN voxel with the motor cortical areas. Functional connectivity was calculated based on functional MRI, as the correlation of the signal within a given brain voxel with the signal in the STN. Also, the signal per STN voxel was explained in terms of the correlation with motor or limbic brain seed ROI areas. Both right and left STN ROIs appeared to be structurally and functionally connected to brain areas that are part of the motor, associative, and limbic circuit. Furthermore, this study enabled us to assess the level of segregation of the STN motor part, which is relevant for the planning of STN DBS procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variables involved in the equations that describe realistic synaptic dynamics always vary in a limited range. Their boundedness makes the synapses forgetful, not for the mere passage of time, but because new experiences overwrite old memories. The forgetting rate depends on how many synapses are modified by each new experience: many changes means fast learning and fast forgetting, whereas few changes means slow learning and long memory retention. Reducing the average number of modified synapses can extend the memory span at the price of a reduced amount of information stored when a new experience is memorized. Every trick which allows to slow down the learning process in a smart way can improve the memory performance. We review some of the tricks that allow to elude fast forgetting (oblivion). They are based on the stochastic selection of the synapses whose modifications are actually consolidated following each new experience. In practice only a randomly selected, small fraction of the synapses eligible for an update are actually modified. This allows to acquire the amount of information necessary to retrieve the memory without compromising the retention of old experiences. The fraction of modified synapses can be further reduced in a smart way by changing synapses only when it is really necessary, i.e. when the post-synaptic neuron does not respond as desired. Finally we show that such a stochastic selection emerges naturally from spike driven synaptic dynamics which read noisy pre and post-synaptic neural activities. These activities can actually be generated by a chaotic system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebral disconnectivity due to white matter alterations in patients with chronic schizophrenia assessed by diffusion tensor imaging has been reported previously. The aim of this preliminary study is to investigate whether cerebral disconnectivity can be detected as early as the first episode of schizophrenia. Intervoxel coherence values were compared by voxel-based t test in 12 patients with first episode schizophrenia and 12 age- and gender-matched control groups. We detected 14 circumscribed significant clusters (P < 0.02), 3 of them with higher, and 11 of them with lower IC values for patients with schizophrenia than for healthy control groups. We interpret these white matter alterations in different regions to be disconnected fiber tracts already present early in schizophrenic disease progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a model of spike-driven synaptic plasticity inspired by experimental observations and motivated by the desire to build an electronic hardware device that can learn to classify complex stimuli in a semisupervised fashion. During training, patterns of activity are sequentially imposed on the input neurons, and an additional instructor signal drives the output neurons toward the desired activity. The network is made of integrate-and-fire neurons with constant leak and a floor. The synapses are bistable, and they are modified by the arrival of presynaptic spikes. The sign of the change is determined by both the depolarization and the state of a variable that integrates the postsynaptic action potentials. Following the training phase, the instructor signal is removed, and the output neurons are driven purely by the activity of the input neurons weighted by the plastic synapses. In the absence of stimulation, the synapses preserve their internal state indefinitely. Memories are also very robust to the disruptive action of spontaneous activity. A network of 2000 input neurons is shown to be able to classify correctly a large number (thousands) of highly overlapping patterns (300 classes of preprocessed Latex characters, 30 patterns per class, and a subset of the NIST characters data set) and to generalize with performances that are better than or comparable to those of artificial neural networks. Finally we show that the synaptic dynamics is compatible with many of the experimental observations on the induction of long-term modifications (spike-timing-dependent plasticity and its dependence on both the postsynaptic depolarization and the frequency of pre- and postsynaptic neurons).