24 resultados para SWARM-FOUNDING WASP
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The most consistent feature of Wiskott Aldrich syndrome (WAS) is profound thrombocytopenia with small platelets. The responsible gene encodes WAS protein (WASP), which functions in leucocytes as an actin filament nucleating agent -yet- actin filament nucleation proceeds normally in patient platelets regarding shape change, filopodia and lamellipodia generation. Because WASP localizes in the platelet membrane skeleton and is mobilized by alphaIIbbeta3 integrin outside-in signalling, we questioned whether its function might be linked to integrin. Agonist-induced alphaIIbbeta3 activation (PAC-1 binding) was normal for patient platelets, indicating normal integrin inside-out signalling. Inside-out signalling (fibrinogen, JON/A binding) was also normal for wasp-deficient murine platelets. However, adherence/spreading on immobilized fibrinogen was decreased for patient platelets and wasp-deficient murine platelets, indicating decreased integrin outside-in responses. Another integrin outside-in dependent response, fibrin clot retraction, involving contraction of the post-aggregation actin cytoskeleton, was also decreased for patient platelets and wasp-deficient murine platelets. Rebleeding from tail cuts was more frequent for wasp-deficient mice, suggesting decreased stabilisation of the primary platelet plug. In contrast, phosphatidylserine exposure, a pro-coagulant response, was enhanced for WASP-deficient patient and murine platelets. The collective results reveal a novel function for WASP in regulating pro-aggregatory and pro-coagulant responses downstream of integrin outside-in signalling.
Resumo:
Courtship behaviour and associated morphological characters are believed to evolve under diversifying sexual selection. In Hymenoptera, sexually dimorphic antennal structures, the 'tyloids', show a large variability. Although crucial for functional interpretation, the link between tyloid morphology and courtship behaviour has gained only limited attention. Here, we investigate antennal morphology and antennal courtship in the parasitoid wasp Syrphoctonus tarsatorius (Hymenoptera: Ichneumonidae: Diplazontinae). We confirm the glandular nature of the tyloids by light and scanning electron microscopy. Moreover, we report a new form of antennation during courtship, antennal double-coiling, which links morphology and behaviour by bringing the tyloids in direct contact with the antennae of the female, thus probably facilitating the transfer of a contact pheromone. We show that a change in haemolymph pressure is the activator of the antennal movement and that it can be reproduced in the laboratory using amputated antennae. Investigations of antennal structure and movement in three additional hymenopteran species suggest that the number and location of tyloids coincide with the modality of antennal coiling. Our method for simulating antennal movement will enable retrieving information about courtship behaviour from museum specimens, thus leading to a better understanding of the evolution of courtship behaviour in Hymenoptera.
Resumo:
Background Parasitic wasps constitute one of the largest group of venomous animals. Although some physiological effects of their venoms are well documented, relatively little is known at the molecular level on the protein composition of these secretions. To identify the majority of the venom proteins of the endoparasitoid wasp Chelonus inanitus (Hymenoptera: Braconidae), we have randomly sequenced 2111 expressed sequence tags (ESTs) from a cDNA library of venom gland. In parallel, proteins from pure venom were separated by gel electrophoresis and individually submitted to a nano-LC-MS/MS analysis allowing comparison of peptides and ESTs sequences. Results About 60% of sequenced ESTs encoded proteins whose presence in venom was attested by mass spectrometry. Most of the remaining ESTs corresponded to gene products likely involved in the transcriptional and translational machinery of venom gland cells. In addition, a small number of transcripts were found to encode proteins that share sequence similarity with well-known venom constituents of social hymenopteran species, such as hyaluronidase-like proteins and an Allergen-5 protein. An overall number of 29 venom proteins could be identified through the combination of ESTs sequencing and proteomic analyses. The most highly redundant set of ESTs encoded a protein that shared sequence similarity with a venom protein of unknown function potentially specific of the Chelonus lineage. Venom components specific to C. inanitus included a C-type lectin domain containing protein, a chemosensory protein-like protein, a protein related to yellow-e3 and ten new proteins which shared no significant sequence similarity with known sequences. In addition, several venom proteins potentially able to interact with chitin were also identified including a chitinase, an imaginal disc growth factor-like protein and two putative mucin-like peritrophins. Conclusions The use of the combined approaches has allowed to discriminate between cellular and truly venom proteins. The venom of C. inanitus appears as a mixture of conserved venom components and of potentially lineage-specific proteins. These new molecular data enrich our knowledge on parasitoid venoms and more generally, might contribute to a better understanding of the evolution and functional diversity of venom proteins within Hymenoptera.
Resumo:
It is a globally important challenge to meet increasing demands for resources and, at the same time, protect biodiversity and ecosystem services. Farming is usually regarded as a major threat to biodiversity due to its expansion into natural areas. We compared biodiversity of bees and wasps between heterogeneous small-scale farming areas and protected forest in northern coastal Belize, Central America. Malaise traps operated for three months during the transition from wet to dry season. Farming areas consisted of a mosaic of mixed crop types, open habitat, secondary forest, and agroforestry. Mean species richness per site (alpha diversity), as well as spatial and temporal community variation (beta diversity) of bees and wasps were equal or higher in farming areas compared to protected forest. The higher species richness and community variation in farmland was due to additional species that did not occur in the forest, whereas most species trapped in forest were also found in farming areas. The overall regional species richness (gamma diversity) increased by 70% with the inclusion of farming areas. Our results suggest that small-scale farming systems adjacent to protected forest may not only conserve, but even favour, biodiversity of some taxonomic groups. We can, however, not exclude possible declines of bee and wasp diversity in more intensified farmland or in landscapes completely covered by heterogeneous farming systems.
Resumo:
Antigenic cross-reactivity has been described between the venom allergen (antigen 5) and mammalian testis proteins. Based on an allergen database we have previously shown that allergens can be represented by allergen motifs. A motif group was found containing venom antigen 5 sequences from different vespids. Using an optimized amino acid profile based on antigen 5 sequences for searching cross-reactive proteins, three human semen proteins belonging to the family of cysteine-rich secretory proteins (hCRISP) were found in the Swiss Protein database. To analyze antigenic cross-reactivity between antigen 5 and hCRISPs, antigen 5 from yellow jacket venom (Ves v 5) and two hCRISPs (CRISP-2 and -3) were chosen and produced as recombinant proteins in E. coli. A correlation was found between antibodies reacting with rVes v 5 and rhCRISP-2, -3 in a small human sera population indicating the presence of cross-reactive antibodies in human serum. Using intravenous immunoglobulin (IVIg), a therapeutic multidonor IgG preparation, cross-reactive antibodies were isolated that recognize rVes v 5, hCRISP-2 and -3 suggesting the presence of common epitopes between Ves v 5 and hCRISPs. However this cross-reactivity seems not to be linked to allergy to wasp venom as we could show no correlation between increasing CAP-class IgE level to wasp venom and IgG to sperm extract and hCRISPs. These data suggest that higher sensitization to wasp venom does not induce more antibodies against autoantigens and might not represent a higher risk to develop autoantibodies leading to infertility.
Resumo:
Background: The diversification of organisms with a parasitic lifestyle is often tightly linked to the evolution of their host associations. If a tight host association exists, closely related species tend to attack closely related hosts; host associations are less stable if associations are determined by more plastic traits like parasitoid searching and oviposition behaviour. The pupal-parasitoids of the genus Ichneumon attack a variety of macrolepidopteran hosts.They are either monophagous or polyphagous, and therefore offer a promissing system to investigate the evolution of host associations. Ichneumon was previously divided into two groups based on general body shape; however, a stout shape has been suggested as an adaptation to buried host pupation sites, and might thus not represent a reliable phylogenetic character. Results: We here reconstruct the first molecular phylogeny of the genus Ichneumon using two mitochondrial (CO1 and NADH1) and one nuclear marker (28S). The resulting phylogeny only supports monophyly of Ichneumon when Ichneumon lugens Gravenhorst, 1829 (formerly in Chasmias, stat. rev.) and Ichneumon deliratorius Linnaeus, 1758 (formerly Coelichneumon) are included. Neither parasitoid species that attack hosts belonging to one family nor those attacking butterflies (Rhopalocera) form monophyletic clades. Ancestral state reconstructions suggest multiple transitions between searching for hosts above versus below ground and between a stout versus elongated body shape. A model assuming correlated evolution between the two characters was preferred over independent evolution of host-searching niche and body shape. Conclusions: Host relations, both in terms of phylogeny and ecology, evolved at a high pace in the genus Ichneumon. Numerous switches between hosts of different lepidopteran families have occurred, a pattern that seems to be the rule among idiobiont parasitoids. A stout body and antennal shape in the parasitoid female is confirmed as an ecological adaptation to host pupation sites below ground and has evolved convergently several times. Morphological characters that might be involved in adaptation to hosts should be avoided as diagnostic characters for phylogeny and classification, as they can be expected to show high levels of homoplasy.
Resumo:
Habitat fragmentation strongly affects species distribution and abundance. However, mechanisms underlying fragmentation effects often remain unresolved. Potential mechanisms are (1) reduced dispersal of a species or (2) altered species interactions in fragmented landscapes. We studied if abundance of the spider-hunting and cavity-nesting wasp Trypoxylon figulus Linnaeus (Hymenoptera: Crabronidae) is affected by fragmentation, and then tested for any effect of larval food (bottom up regulation) and parasitism (top down regulation). Trap nests of T. figulus were studied in 30 agricultural landscapes of the Swiss Plateau. The sites varied in the level of isolation from forest (adjacent, in the open landscape but connected, isolated) and in the amount of woody habitat (from 4 % to 74 %). We recorded wasp abundance (number of occupied reed tubes), determined parasitism of brood cells and analysed the diversity and abundance of spiders that were deposited as larval food. Abundances of T. figulus were negatively related to forest cover in the landscape. In addition, T. figulus abundances were highest at forest edges, reduced by 33.1% in connected sites and by 79.4% in isolated sites. The mean number of spiders per brood cell was lowest in isolated sites. Nevertheless, structural equation modelling revealed that this did not directly determine wasp abundance. Parasitism was neither related to the amount of woody habitat nor to isolation and did not change with host density. Therefore, our study showed that the abundance of T. figulus cannot be fully explained by the studied trophic interactions. Further factors, such as dispersal and habitat preference, seem to play a role in the population dynamics of this widespread secondary carnivore in agricultural landscapes.