7 resultados para SURFACE MODIFICATIONS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Purpose: A satisfactory clinical outcome in dental implant treatment relies on primary stability for immediate load bearing. While the geometric design of an implant contributes to mechanical stability, the nature of the implant surface itself is also critically important. Biomechanical and microcomputerized tomographic evaluation of implant osseointegration was performed to compare alternative structural, chemical and biochemical, and/or pharmaceutical surface treatments applied to an identical established implant design. Materials and Methods: Dental implants with the same geometry but with 6 different surface treatments were tested in vivo in a sheep model (pelvis). Peri-implant bone density and removal torque were compared at 2, 4, and 8 weeks after implantation. Implant surfaces tested were: sandblasted and acid-etched titanium (Ti), sandblasted and etched zirconia, Ti coated with calcium phosphate (CaP), Ti modified via anodic plasma-chemical treatment (APC), bisphosphonate-coated Ti (Ti + Bisphos), and Ti coated with collagen containing chondroitin sulfate (CS). Results: All dental implants were well integrated at the time of sacrifice. There were no significant differences observed in peri-implant bone density between implant groups. After 8 weeks of healing, removal torque values for Ti, Ti + CaP, Ti + Bisphos, and Ti + collagen + CS were significantly higher than those for zirconia and Ti + APC. Conclusions: Whereas the sandblasted/acid-etched Ti implant can still be considered the reference standard surface for dental implants, functional surface modifications such as bisphosphonate or collagen coating seem to enhance early peri-implant bone formation and should be studied further.
Resumo:
In the past, several modifications of specific surface properties such as topography, structure, chemistry, surface charge, and wettability have been investigated to predictably improve the osseointegration of titanium implants. The aim of the present review was to evaluate, based on the currently available evidence, the impact of hydrophilic surface modifications of titanium for dental implants. A surface treatment was performed to produce hydroxylated/hydrated titanium surfaces with identical microstructure to either acid-etched, or sand-blasted, large grit and acid-etched substrates, but with hydrophilic character. Preliminary in vitro studies have indicated that the specific properties noted for hydrophilic titanium surfaces have a significant influence on cell differentiation and growth factor production. Animal experiments have pointed out that hydrophilic surfaces improve early stages of soft tissue and hard tissue integration of either nonsubmerged or submerged titanium implants. This data was also corroborated by the results from preliminary clinical studies. In conclusion, the present review has pointed to a potential of hydrophilic surface modifications to support tissue integration of titanium dental implants.
Resumo:
There is a need for evaluating zirconia surface modifications and their potential impact on the biological response of osteogenic cells. Grit blasted zirconia discs were either left untreated or underwent acid or alkaline etching. Adhesion and osteogenic differentiation of MG63 cells was determined after one week of culture. The macro-scaled roughness of the grit blasted zirconia discs, independent of the surface treatment, was within a narrow range and only slightly smoother than titanium discs. However, the alkaline- and acid-etching led to an increase of the micro-roughness of the surface. The surface modifications had no effect on cell spreading and did not cause significant change in the expression of differentiation markers. Thus, in this respective setting, morphologic changes observed upon treatment of grit blasted zirconia discs with acid or alkaline do not translate into changes in MG63 cell adhesion or differentiation and are comparable to findings with anodized titanium discs.
Resumo:
Background Increasing concern has been expressed regarding the potential adverse health effects that may be associated with human exposure to inhaled multi-walled carbon nanotubes (MWCNTs). Thus it is imperative that an understanding as to the underlying mechanisms and the identification of the key factors involved in adverse effects are gained. In the alveoli, MWCNTs first interact with the pulmonary surfactant. At this interface, proteins and lipids of the pulmonary surfactant bind to MWCNTs, affecting their surface characteristics. Aim of the present study was to investigate if the pre-coating of MWCNTs with pulmonary surfactant has an influence on potential adverse effects, upon both (i) human monocyte derived macrophages (MDM) monocultures, and (ii) a sophisticated in vitro model of the human epithelial airway barrier. Both in vitro systems were exposed to MWCNTs either pre-coated with a porcine pulmonary surfactant (Curosurf) or not. The effect of MWCNTs surface charge was also investigated in terms of amino (−NH2) and carboxyl (−COOH) surface modifications. Results Pre-coating of MWCNTs with Curosurf affects their oxidative potential by increasing the reactive oxygen species levels and decreasing intracellular glutathione depletion in MDM as well as decreases the release of Tumour necrosis factor alpha (TNF-α). In addition, an induction of apoptosis was observed after exposure to Curosurf pre-coated MWCNTs. In triple cell-co cultures the release of Interleukin-8 (IL-8) was increased after exposure to Curosurf pre-coated MWCNTs. Effects of the MWCNTs functionalizations were minor in both MDM and triple cell co-cultures. Conclusions The present study clearly indicates that the pre-coating of MWCNTs with pulmonary surfactant more than the functionalization of the tubes is a key factor in determining their ability to cause oxidative stress, cytokine/chemokine release and apoptosis. Thus the coating of nano-objects with pulmonary surfactant should be considered for future lung in vitro risk assessment studies. Keywords: Multi-walled carbon nanotubes (MWCNTs); Pulmonary surfactant (Curosurf); Macrophages; Epithelial cells; Dendritic cells; Triple cell co-culture; Pro-inflammatory and oxidative reactions
Resumo:
BACKGROUND: Zirconia (ZrO2 ) has received interest as a dental material; however, little information is available on the impact of surface modifications on the osseointegration of zirconia implants. PURPOSE: The aim of the present study was to determine the effect of acid or alkaline etching of sandblasted ZrO2 implants on bone apposition in vivo. METHODS: Cylindrical ZrO2 implants with two circumferential grooves were placed in the maxilla of 12 miniature pigs. Biopsies were harvested after 1, 2, 4, and 8 weeks of healing. Undecalcified toluidine blue-stained ground sections were produced. The bone-to-implant contact, the bone area, and the presence of multinucleated giant cells were determined by histomorphometry. An uncorrected explorative statistical analysis was performed. RESULTS: Acid etching but not alkaline etching of sandblasted ZrO2 implants caused more bone-to-implant contact than sandblasted ZrO2 implants. The bone area was unaffected by the surface modifications. Acid and alkaline etching both increased the formation of multinucleated giant cells at the implant surface. CONCLUSIONS: This study provides a scientific basis to further investigate the impact of acid etching of sandblasted ZrO2 implants on osseointegration and the role of multinucleated giant cells in this process.
Resumo:
Purpose: The purpose of this study was to evaluate the bone formation capability of polyetheretherketone (PEEK) and carbon fiber-reinforced PEEK (CFR-PEEK) implants coated with different titanium and hydroxyapatite plasma-sprayed layers after 2 and 12 weeks. Methods: In six sheep 108 implants were placed in the pelvis. Altogether six different surface modifications were tested. After 2 and 12 weeks, n = 3 implants per group were examined histologically and n = 6 implants per group were tested by a pull-out test. Results: Biomechanically (p = 0.001) as well as histologically (p > 0.05) surface coating of PEEK/CFR-PEEK led to an increase of osseointegration from 2 to 12 weeks. After 12 weeks, coated implants demonstrated significant (p < 0.001) higher pull-out values in comparison to uncoated implants. Overall, the double coating (titanium bond layer and hydroxyapatite top layer) showed the most favorable results after 2 and 12 weeks. Conclusions: Plasma-sprayed titanium and hydroxyapatite coatings on PEEK or CFR-PEEK demonstrated a significant improvement of osseointegration.
Resumo:
The present study examined the impact of implant surface modifications on osseointegration in an osteoporotic rodent model. Sandblasted, acid-etched titanium implants were either used directly (control) or were further modified by surface conditioning with NaOH or by coating with one of the following active agents: collagen/chondroitin sulphate, simvastatin, or zoledronic acid. Control and modified implants were inserted into the proximal tibia of aged ovariectomised (OVX) osteoporotic rats (n = 32/group). In addition, aged oestrogen competent animals received either control or NaOH conditioned implants. Animals were sacrificed 2 and 4 weeks post-implantation. The excised tibiae were utilised for biomechanical and morphometric readouts (n = 8/group/readout). Biomechanical testing revealed at both time points dramatically reduced osseointegration in the tibia of oestrogen deprived osteoporotic animals compared to intact controls irrespective of NaOH exposure. Consistently, histomorphometric and microCT analyses demonstrated diminished bone-implant contact (BIC), peri-implant bone area (BA), bone volume/tissue volume (BV/TV) and bone-mineral density (BMD) in OVX animals. Surface coating with collagen/chondroitin sulphate had no detectable impact on osseointegration. Interestingly, statin coating resulted in a transient increase in BIC 2 weeks post-implantation; which, however, did not correspond to improvement of biomechanical readouts. Local exposure to zoledronic acid increased BIC, BA, BV/TV and BMD at 4 weeks. Yet this translated only into a non-significant improvement of biomechanical properties. In conclusion, this study presents a rodent model mimicking severely osteoporotic bone. Contrary to the other bioactive agents, locally released zoledronic acid had a positive impact on osseointegration albeit to a lesser extent than reported in less challenging models.