19 resultados para SUPPRESSOR GENE MASPIN

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rupture of intracranial aneurysms leads to subarachnoid hemorrhage, which is often associated with poor outcome. Preventive treatment of unruptured intracranial aneurysms is possible and recommended. However, the lack of candidate genes precludes identifying patients at risk by genetic analyses. We observed intracranial aneurysms in 2 patients with von Hippel-Lindau (VHL) disease and the known disease-causing mutation c.292T > C (p.Tyr98His) in the VHL tumor suppressor gene. This study investigates whether the VHL gene is a possible candidate gene for aneurysm formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tumor suppressor gene hypermethylated in cancer 1 (HIC1), located on human chromosome 17p13.3, is frequently silenced in cancer by epigenetic mechanisms. Hypermethylated in cancer 1 belongs to the bric à brac/poxviruses and zinc-finger family of transcription factors and acts by repressing target gene expression. It has been shown that enforced p53 expression leads to increased HIC1 mRNA, and recent data suggest that p53 and Hic1 cooperate in tumorigenesis. In order to elucidate the regulation of HIC1 expression, we have analysed the HIC1 promoter region for p53-dependent induction of gene expression. Using progressively truncated luciferase reporter gene constructs, we have identified a p53-responsive element (PRE) 500 bp upstream of the TATA-box containing promoter P0 of HIC1, which is sequence specifically bound by p53 in vitro as assessed by electrophoretic mobility shift assays. We demonstrate that this HIC1 p53-responsive element (HIC1.PRE) is necessary and sufficient to mediate induction of transcription by p53. This result is supported by the observation that abolishing endogenous wild-type p53 function prevents HIC1 mRNA induction in response to UV-induced DNA damage. Other members of the p53 family, notably TAp73beta and DeltaNp63alpha, can also act through this HIC1.PRE to induce transcription of HIC1, and finally, hypermethylation of the HIC1 promoter attenuates inducibility by p53.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hallmark of acute myeloid leukaemia (AML) is a block in differentiation caused by deregulated gene expression. The tumour suppressor Hypermethylated In Cancer 1 (HIC1) is a transcriptional repressor, which is epigenetically silenced in solid cancers. HIC1 mRNA expression was found to be low in 128 patient samples of AML and CD34+ progenitor cells when compared with terminally differentiated granulocytes. HIC1 mRNA was induced in a patient with t(15;17)-positive acute promyelocytic leukaemia receiving all-trans retinoic acid (ATRA) therapy. We therefore investigated whether HIC1 plays a role in granulocytic differentiation and whether loss of function of this gene might contribute to the differentiation block in AML. We evaluated HIC1 mRNA levels in HL-60 and U-937 cells upon ATRA-induced differentiation and in CD34+ progenitor cells after granulocyte colony-stimulating factor-induced differentiation. In both models of granulocytic differentiation, we observed significant HIC1 induction. When HIC1 mRNA was suppressed in HL-60 cells using stably expressed short hairpin RNA targeting HIC1, granulocytic differentiation was altered as assessed by CD11b expression. Bisulphite sequencing of GC-rich regions (CpG islands) in the HIC1 promoter provided evidence that the observed suppression in HL-60 cells was not because of promoter hypermethylation. Our findings indicate a role for the tumour suppressor gene HIC1 in granulocytic differentiation. Low expression of HIC1 may very well contribute to pathogenic events in leukaemogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Hypermethylated in Cancer 1 (HIC1) gene encodes a zinc finger transcriptional repressor that cooperates with p53 to suppress cancer development. We and others recently showed that HIC1 is a transcriptional target of p53. To identify additional transcriptional regulators of HIC1, we screened a set of transcription factors for regulation of a human HIC1 promoter reporter. We found that E2F1 strongly activates the full-length HIC1 promoter reporter. Promoter deletions and mutations identified two E2F responsive elements in the HIC1 core promoter region. Moreover, in vivo binding of E2F1 to the HIC1 promoter was shown by chromatin immunoprecipitation assays in human TIG3 fibroblasts expressing tamoxifen-activated E2F1. In agreement, activation of E2F1 in TIG3-E2F1 cells markedly increased HIC1 expression. Interestingly, expression of E2F1 in the p53(-/-) hepatocellular carcinoma cell line Hep3B led to an increase of endogenous HIC1 mRNA, although bisulfite genomic sequencing of the HIC1 promoter revealed that the region bearing the two E2F1 binding sites is hypermethylated. In addition, endogenous E2F1 induced by etoposide treatment bound to the HIC1 promoter. Moreover, inhibition of E2F1 strongly reduced the expression of etoposide-induced HIC1. In conclusion, we identified HIC1 as novel E2F1 transcriptional target in DNA damage responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A lipidomic and metabolomic investigation of serum and liver from mice was performed to gain insight into the tumor suppressor gene Hint1. A major reprogramming of lipid homeostasis was found in both serum and liver of Hint1-null (Hint(-/-)) mice, with significant changes in the levels of many lipid molecules, as compared with gender-, age-, and strain-matched WT mice. In the Hint1(-/-) mice, serum total and esterified cholesterol were reduced 2.5-fold, and lysophosphatidylcholines (LPCs) and lysophosphatidic acids were 10-fold elevated in serum, with a corresponding fall in phosphatidylcholines (PCs). In the liver, MUFAs and PUFAs, including arachidonic acid (AA) and its metabolic precursors, were also raised, as was mRNA encoding enzymes involved in AA de novo synthesis. There was also a significant 50% increase in hepatic macrophages in the Hint1(-/-) mice. Several hepatic ceramides and acylcarnitines were decreased in the livers of Hint1(-/-) mice. The changes in serum LPCs and PCs were neither related to hepatic phospholipase A2 activity nor to mRNAs encoding lysophosphatidylcholine acetyltransferases 1-4. The lipidomic phenotype of the Hint1(-/-) mouse revealed decreased inflammatory eicosanoids with elevated proliferative mediators that, combined with decreased ceramide apoptosis signaling molecules, may contribute to the tumor suppressor activity of Hint1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inheritance of a mutant allele of the von Hippel-Lindau tumor suppressor gene predisposes affected individuals to develop renal cysts and clear cell renal cell carcinoma. Von Hippel-Lindau gene inactivation in single renal tubular cells has indirectly been showed by immunohistochemical staining for the hypoxia-inducible factor alpha target gene product carbonic anhydrase IX. In this study we were able to show von Hippel-Lindau gene deletion in carbonic anhydrase IX positive nonneoplastic renal tubular cells, in epithelial cells lining renal cysts and in a clear cell renal cell carcinoma of a von Hippel-Lindau patient. This was carried out by means of laser confocal microscopy and immunohistochemistry in combination with fluorescence in situ hybridization. Carbonic anhydrase IX negative normal renal tubular cells carried no von Hippel-Lindau gene deletion. Furthermore, recent studies have indicated that the von Hippel-Lindau gene product is necessary for the maintenance of primary cilia stability in renal epithelial cells and that disruption of the cilia structure by von Hippel-Lindau gene inactivation induces renal cyst formation. In our study, we show a significant shortening of primary cilia in epithelial cells lining renal cysts, whereas, single tubular cells with a von Hippel-Lindau gene deletion display to a far lesser extent signs of cilia shortening. Our in vivo results support a model in which renal cysts represent precursor lesions for clear cell renal cell carcinoma and arise from single renal tubular epithelial cells owing to von Hippel-Lindau gene deletion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The chromosomal region 17p13.3 is frequently deleted or epigenetically silenced in a variety of human cancers. It includes the hypermethylated in cancer 1 (HIC1) gene placed telomerically to the p53 tumour suppressor gene. HIC1 encodes a transcriptional repressor, and its targets identified to date are genes involved in proliferation, tumour growth and angiogenesis. In addition, HIC1 functionally cooperates with p53 to suppress cancer development. Frequent allelic loss at position 17p13.1 in human cancers often points to mutations of the tumour suppressor p53. However, in a variety of cancer types, allelic loss of the short arm of chromosome 17 may hit regions distal to p53 and, interestingly, without leading to p53 mutations. Furthermore, the neighbouring region 17p13.3 often shows loss of heterozygosity or DNA hypermethylation in various types of solid tumours and leukaemias. In line with this concept, Wales et al. described a new potential tumour suppressor in this region and named it hypermethylated in cancer 1 (HIC1). Further, it was shown that in the majority of cases hypermethylation of this chromosomal region leads to epigenetic inactivation of HIC1. A role for HIC1 in tumour development is further supported by a mouse model, since various spontaneous, age- and gender-specific malignant tumours occur in heterozygous Hic1+/- knockout mice. Furthermore, exogenously delivered HIC1 leads to a significant decrease in clonogenic survival in cancer cell lines. This review highlights the role of HIC1 inactivation in solid tumours and particularly in leukaemia development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tumor suppressor genes, such as p53, RB, the INK4-ARF family and PML, suppress malignant transformation by regulating cell cycle progression, ensuring the fidelity of DNA replication and chromosomal segregation, or by inducing apoptosis in response to potentially deleterious events. In myeloid leukemia, hematopoietic differentiation resulting from highly coordinated, stage-wise expression of myeloid transcription and soluble signaling factors is disrupted leading to a block in terminal differentiation and uncontrolled proliferation. This virtually always involves functional inactivation or genetic disruption of one or several tumor suppressor genes in order to circumvent their checkpoint control and apoptosis-inducing functions. Hence, reactivation of tumor suppressor gene function has therapeutic potential and can possibly enhance conventional cytotoxic chemotherapy. In this review, we focus on the role of different tumor suppressor genes in myeloid differentiation and leukemogenesis, and discuss implications for therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The majority of patients with acute myeloid leukemia (AML) still die of their disease, and novel therapeutic concepts are needed. Timely expression of the hematopoietic master regulator PU.1 is crucial for normal development of myeloid and lymphoid cells. Targeted disruption of an upstream regulatory element (URE) located several kb upstream in the PU.1 promoter decreases PU.1 expression thereby inducing AML in mice. In addition, suppression of PU.1 has been observed in specific subtypes of human AML. Here, we identified nuclear factor-kappaB (NF-kappaB) to activate PU.1 expression through a novel site within the URE. We found sequence variations of this particular NF-kappaB site in 4 of 120 AML patients. These variant NF-kappaB sequences failed to mediate activation of PU.1. Moreover, the synergistic activation of PU.1 together with CEBPB through these variant sequences was also lost. Finally, AML patients with such variant sequences had suppressed PU.1 mRNA expression. This study suggests that changes of a single base pair in a distal element critically affect the regulation of the tumor suppressor gene PU.1 thereby contributing to the development of AML.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cytokinin ribosides (N(6)-substituted adenosine derivatives) have been shown to have anticancer activity both in vitro and in vivo. This study presents the first systematic analysis of the relationship between the chemical structure of cytokinins and their cytotoxic effects against a panel of human cancer cell lines with diverse histopathological origins. The results confirm the cytotoxic activity of N(6)-isopentenyladenosine, kinetin riboside, and N(6)-benzyladenosine and show that the spectrum of cell lines that are sensitive to these compounds and their tissues of origin are wider than previously reported. The first evidence that the hydroxylated aromatic cytokinins (ortho-, meta-, para-topolin riboside) and the isoprenoid cytokinin cis-zeatin riboside have cytotoxic activities is presented. Most cell lines in the panel showed greatest sensitivity to ortho-topolin riboside (IC(50)=0.5-11.6 microM). Cytokinin nucleotides, some synthesized for the first time in this study, were usually active in a similar concentration range to the corresponding ribosides. However, cytokinin free bases, 2-methylthio derivatives and both O- and N-glucosides showed little or no toxicity. Overall the study shows that structural requirements for cytotoxic activity of cytokinins against human cancer cell lines differ from the requirements for their activity in plant bioassays. The potent anticancer activity of ortho-topolin riboside (GI(50)=0.07-84.60 microM, 1st quartile=0.33 microM, median=0.65 microM, 3rd quartile=1.94 microM) was confirmed using NCI(60), a standard panel of 59 cell lines, originating from nine different tissues. Further, the activity pattern of oTR was distinctly different from those of standard anticancer drugs, suggesting that it has a unique mechanism of activity. In comparison with standard drugs, oTR showed exceptional cytotoxic activity against NCI(60) cell lines with a mutated p53 tumour suppressor gene. oTR also exhibited significant anticancer activity against several tumour models in in vivo hollow fibre assays.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oncogene-induced cellular senescence (OIS) is an increasingly recognized tumour suppressor mechanism that confines the outgrowth of neoplastic cells in vivo. It relies on a complex signalling network, but only few components have been identified so far. Gene-expression profiling revealed a >100-fold increase in the levels of the transcription factor and putative tumour suppressor gene TGFβ-stimulated clone 22 (TSC22D1) in BRAF(E600)-induced senescence, in both human fibroblasts and melanocytes. Only the short TSC22D1 transcript was upregulated, whereas the abundance of the large protein variant was suppressed by proteasomal degradation. The TSC22D1 protein variants, in complex with their dimerization partner TSC22 homologue gene 1 (THG1), exerted opposing functions, as selective depletion of the short form, or conversely, overexpression of the large variant, resulted in abrogation of OIS. This was accompanied by the suppression of several inflammatory factors and p15(INK4B), with TSC22D1 acting as a critical effector of C/EBPβ. Our results demonstrate that the differential regulation of antagonistic TSC22D1 variants is required for the establishment of OIS and suggest distinct contributions of TSC22 family members to the progression of BRAF(E600)-driven neoplasia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Brain tumors comprise a wide variety of neoplasia classified according to their cellular origin and their morphological and histological characteristics. The transformed phenotype of brain tumor cells has been extensively studied in the past years, achieving a significant progress in our understanding of the molecular pathways leading to tumorigenesis. It has been reported that the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway is frequently altered in grade IV brain tumors resulting in uncontrolled cell growth, survival, proliferation, angiogenesis, and migration. This aberrant activation can be explained by oncogenic mutations in key components of the pathway or through abnormalities in its regulation. These alterations include overexpression and mutations of receptor tyrosine kinases (RTKs), mutations and deletions of the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor gene, encoding a lipid kinase that directly antagonized PI3K activity, and alterations in Ras signaling. Due to promising results of preclinical studies investigating the PI3K/AKT pathway in grade IV brain tumors like glioblastoma and medulloblastoma, the components of this pathway have emerged as promising therapeutic targets to treat these malignant brain tumors. Although an arsenal of small molecule inhibitors that target specific components of this signaling pathway is being developed, its successful application in the clinics remains a challenge. In this article we will review the molecular basis of the PI3K/AKT signaling pathway in malignant brain tumors, mainly focusing on glioblastoma and medulloblastoma, and we will further discuss the current status and potential of molecular targeted therapies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We recently established the rationale that NRBP1 (nuclear receptor binding protein 1) has a potential growth-promoting role in cell biology. NRBP1 interacts directly with TSC-22, a potential tumor suppressor gene that is differently expressed in prostate cancer. Consequently, we analyzed the role of NRBP1 expression in prostate cancer cell lines and its expression on prostate cancer tissue microarrays (TMA).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intratumoral hypoxia is prevalent in many solid tumors and is a marker of poor clinical prognosis in prostate cancer. The presence of hypoxia is associated with increased chromosomal instability, gene amplification, downregulation of DNA damage repair pathways, and altered sensitivity to agents that damage DNA. These genomic changes could also lead to oncogene activation or tumor suppressor gene inactivation during prostate cancer progression. We review here the concept of repair-deficient hypoxic tumor cells that can adapt to low oxygen levels and acquire an aggressive "unstable mutator" phenotype. We speculate that hypoxia-induced genomic instability may also be a consequence of aberrant mitotic function in hypoxic cells, which leads to increased chromosomal instability and aneuploidy. Because both hypoxia and aneuploidy are prognostic factors in prostate cancer, a greater understanding of these biological states in prostate cancer may lead to novel prognostic and predictive tests and drive new therapeutic strategies in the context of personalized cancer medicine.