43 resultados para SUPERFLUID-HELIUM
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The current hypothesis that human pulmonary alveolarization is complete by 3 years is contradicted by new evidence of alveolarization throughout adolescence in mammals.
Resumo:
Asphyxial suicide by placing a plastic bag over the head, especially in combination with inhalation of gases, is a rarely described method of committing suicide. This article reports a case of suicidal asphyxiation by inhaling the inert gas helium inside a plastic bag. A 64-year-old man probably followed the instructions described in an article about committing suicide written by a medical practitioner from Zürich. This form of suicide is recommended by right-to-die groups and in the internet as a certain, fast, and painless suicide method. Additionally, it leaves only seldom externally visible marks or pathomorphological findings on the body. If the plastic bag and other auxiliary means are removed by another person, the forensic death investigation of cause and manner of death may be very difficult. Therefore, the death scene investigation and the inquiry ordered in the environment of the deceased are very important.
Resumo:
BACKGROUND: The noble gas helium is devoid of anesthetic effects, and it elicits cardiac preconditioning. We hypothesized that inhalation of helium provides protection against postocclusive endothelial dysfunction after ischemia-reperfusion of the forearm in humans. METHODS: Eight healthy male subjects were enrolled in this study with a crossover design. Each volunteer was randomly exposed to 15 min of forearm ischemia in the presence or absence of helium inhalation. Helium was inhaled at an end-tidal concentration of 50 vol% from 15 min before ischemia until 5 min after the onset of reperfusion ("helium conditioning"). Hyperemic reaction, a marker of nitric oxide bioavailability and endothelial function, was determined at 15 and 30 min of reperfusion on the forearm using venous occlusion plethysmography. Expression of the proinflammatory markers CD11b, ICAM-1, PSGL-1, and L-selectin (CD62L) on leukocytes and P-selectin (CD62P), PSGL-1, and CD42b on platelets were measured by flow cytometry during reperfusion. RESULTS: Ischemia-reperfusion consistently reduced the postocclusive endothelium-dependent hyperemic reaction at 15 and 30 min of reperfusion. Periischemic inhalation of helium at 50 vol% did not improve postocclusive hyperemic reaction. Helium decreased expression of the proinflammatory marker CD11b and ICAM-1 on leukocytes and attenuated the expression of the procoagulant markers CD42b and PSGL-1 on platelets. CONCLUSIONS: Although inhalation of helium diminished the postischemic inflammatory reaction, our data indicate that human endothelium, which is a component of all vital organs, is not amenable to protection by helium at 50 vol% in vivo. This is in contrast to sevoflurane, which protects human endothelium at low subanesthetic concentrations.
Resumo:
Consideration of the geosphere for isolation of nuclear waste has generated substantial interest in the origin, age, and movement of fl uids and gases in low-permeability rock formations. Here, we present profi les of isotopes, solutes, and helium in porewaters recovered from 860 m of Cambrian to Devonian strata on the eastern fl ank of the Michigan Basin. Of particular interest is a 240-m-thick, halite-mineralized, Ordovician shale and carbonate aquiclude, which hosts Br–-enriched, post-dolomitic brine (5.8 molal Cl) originating as evaporated Silurian seawater. Authigenic helium that has been accumulating in the aquiclude for more than 260 m.y. is found to be isolated from underlying allochthonous, 3He-enriched helium that originated from the rifted base of the Michigan Basin and the Canadian Shield. The Paleozoic age and immobility of the pore fl uids in this Ordovician aquiclude considerably strengthen the safety case for deep geological repositories, but also provide new insights into the origin of deep crustal brines and opportunities for research on other components of a preserved Paleozoic porewater system.
Resumo:
Several important fundamental and applied problems require a quantification of slow rates of groundwater flow. To resolve these problems helium appears to be a promising tracer. In this contribution we discuss a new approach, which gives the helium inventory in a rock – pore water system by using the relevant mineral record, i.e., without extraction and investigation of the porewater samples. Some U- and Th-poor minerals such as quartz (quartz separates from Permo-Carboniferous Formation, sandstone–shale interlayering, Molasses Basin, Northern Switzerland, hereafter PCF, are used in this study) contain excessive helium having migrated into their internal helium-accessible volume (HAV) from the surrounding porewater [I.N. Tolstikhin, B.E. Lehmann, H.H. Loosli, A. Gautschi, Helium and argon isotopes in rocks, minerals and related groundwaters: a case study in Northern Switzerland, Geochim. Cosmochim. Acta 60 (1996) 1497–1514]. These volumes are estimated by using helium as a nano-size penetrating tool, i.e., by saturation of the minerals with helium under controlled pressure–temperature conditions and subsequent measurements of the helium-saturated concentrations. In the quartz separates HAV/total volume ratios vary from 0.017% to 0.16%; along with the measured initial (unsaturated) He concentration the HAV gives the internal helium pressure, the mean value obtained for 7 samples (25 sample aliquots) is P=0.45F0.15 atm (1 r). The product of helium pressure and solubility (7.35_10_3 cc STP He/cc H2O for the temperature and salinity of PCF aquifers reported in [F.J. Pearson, W. Balderer, H.H. Loosli, B.E. Lehmann, A. Matter, T. Peters, H. Schmassmann, A. Gautschi, Applied Isotope Hydrogeology–A Case Study in Northern Switzerland, Elsevier Amsterdam, 1991, 439 pp.]) is the mineral-derived He concentration in the respective porewater, CPW=0.0035F0.0017 cc He/cc H2O. This value is in full accord with measured He concentrations in PCF aquifers, CPCF, varying from 0.0045 to 0.0016 cc He/cc H2O. This agreement validates the proposed approach and also shows that the mineral–porewater helium–concentration equilibrium has been established. Indeed, estimates of the He-migration rates through our quartz samples show that in ~6000 years the internal pressure should equilibrate with He-concentration in related porewater of PCF, and this time interval is short compared to independent estimates [I.N. Tolstikhin, B.E. Lehmann, H.H. Loosli, A. Gautschi, Helium and argon isotopes in rocks, minerals and related groundwaters: a case study in Northern Switzerland, Geochim. Cosmochim. Acta 60 (1996) 1497–1514]. The helium inventory in the rock–porewater assemblage shows that helium abundance in pore waters is indeed important. In shale samples (with ~15% porosity) porewaters contain more helium than the host minerals altogether. Porewater heliumconcentration profiles, available from the mineral record, along with helium production rates are input parameters allowing model(s) of helium migration through a hydrological structure to be developed. Quite high helium concentrations in PCF porewaters imply slow removal mechanisms, which will be discussed elsewhere.