21 resultados para STATISTICAL DATA INTERPRETATION
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Does published orthodontic research account for clustering effects during statistical data analysis?
Resumo:
In orthodontics, multiple site observations within patients or multiple observations collected at consecutive time points are often encountered. Clustered designs require larger sample sizes compared to individual randomized trials and special statistical analyses that account for the fact that observations within clusters are correlated. It is the purpose of this study to assess to what degree clustering effects are considered during design and data analysis in the three major orthodontic journals. The contents of the most recent 24 issues of the American Journal of Orthodontics and Dentofacial Orthopedics (AJODO), Angle Orthodontist (AO), and European Journal of Orthodontics (EJO) from December 2010 backwards were hand searched. Articles with clustering effects and whether the authors accounted for clustering effects were identified. Additionally, information was collected on: involvement of a statistician, single or multicenter study, number of authors in the publication, geographical area, and statistical significance. From the 1584 articles, after exclusions, 1062 were assessed for clustering effects from which 250 (23.5 per cent) were considered to have clustering effects in the design (kappa = 0.92, 95 per cent CI: 0.67-0.99 for inter rater agreement). From the studies with clustering effects only, 63 (25.20 per cent) had indicated accounting for clustering effects. There was evidence that the studies published in the AO have higher odds of accounting for clustering effects [AO versus AJODO: odds ratio (OR) = 2.17, 95 per cent confidence interval (CI): 1.06-4.43, P = 0.03; EJO versus AJODO: OR = 1.90, 95 per cent CI: 0.84-4.24, non-significant; and EJO versus AO: OR = 1.15, 95 per cent CI: 0.57-2.33, non-significant). The results of this study indicate that only about a quarter of the studies with clustering effects account for this in statistical data analysis.
Resumo:
Vietnam has developed rapidly over the past 15 years. However, progress was not uniformly distributed across the country. Availability, adequate visualization and analysis of spatially explicit data on socio-economic and environmental aspects can support both research and policy towards sustainable development. Applying appropriate mapping techniques allows gleaning important information from tabular socio-economic data. Spatial analysis of socio-economic phenomena can yield insights into locally-specifi c patterns and processes that cannot be generated by non-spatial applications. This paper presents techniques and applications that develop and analyze spatially highly disaggregated socioeconomic datasets. A number of examples show how such information can support informed decisionmaking and research in Vietnam.
Resumo:
Background Prognostic models have been developed for patients infected with HIV-1 who start combination antiretroviral therapy (ART) in high-income countries, but not for patients in sub-Saharan Africa. We developed two prognostic models to estimate the probability of death in patients starting ART in sub-Saharan Africa. Methods We analysed data for adult patients who started ART in four scale-up programmes in Côte d'Ivoire, South Africa, and Malawi from 2004 to 2007. Patients lost to follow-up in the first year were excluded. We used Weibull survival models to construct two prognostic models: one with CD4 cell count, clinical stage, bodyweight, age, and sex (CD4 count model); and one that replaced CD4 cell count with total lymphocyte count and severity of anaemia (total lymphocyte and haemoglobin model), because CD4 cell count is not routinely measured in many African ART programmes. Death from all causes in the first year of ART was the primary outcome. Findings 912 (8·2%) of 11 153 patients died in the first year of ART. 822 patients were lost to follow-up and not included in the main analysis; 10 331 patients were analysed. Mortality was strongly associated with high baseline CD4 cell count (≥200 cells per μL vs <25; adjusted hazard ratio 0·21, 95% CI 0·17–0·27), WHO clinical stage (stages III–IV vs I–II; 3·45, 2·43–4·90), bodyweight (≥60 kg vs <45 kg; 0·23, 0·18–0·30), and anaemia status (none vs severe: 0·27, 0·20–0·36). Other independent risk factors for mortality were low total lymphocyte count, advanced age, and male sex. Probability of death at 1 year ranged from 0·9% (95% CI 0·6–1·4) to 52·5% (43·8–61·7) with the CD4 model, and from 0·9% (0·5–1·4) to 59·6% (48·2–71·4) with the total lymphocyte and haemoglobin model. Both models accurately predict early mortality in patients starting ART in sub-Saharan Africa compared with observed data. Interpretation Prognostic models should be used to counsel patients, plan health services, and predict outcomes for patients with HIV-1 infection in sub-Saharan Africa.
Resumo:
During the past 20 years or so, more has become known about the properties of khat, its pharmacology, physiological and psychological effects on humans. However, at the same time its reputation of social and recreational use in traditional contexts has hindered the dissemination of knowledge about its detrimental effects in terms of mortality. This paper focuses on this particular deficit and adds to the knowledge-base by reviewing the scant literature that does exist on mortality associated with the trade and use of khat. We sought all peer-reviewed papers relating to deaths associated with khat. From an initial list of 111, we identified 15 items meeting our selection criteria. Examination of these revealed 61 further relevant items. These were supplemented with published reports, newspaper and other media reports. A conceptual framework was then developed for classifying mortality associated with each stage of the plant's journey from its cultivation, transportation, consumption, to its effects on the human body. The model is demonstrated with concrete examples drawn from the above sources. These highlight a number of issues for which more substantive statistical data are needed, including population-based studies of the physiological and psychological determinants of khat-related fatalities. Khat-consuming communities, and health professionals charged with their care should be more aware of the physiological and psychological effects of khat, together with the risks for morbidity and mortality associated with its use. There is also a need for information to be collected at international and national levels on other causes of death associated with khat cultivation, transportation, and trade. Both these dimensions need to be understood.
Resumo:
OBJECTIVE: To clarify the role of the pulmonary artery catheter in the intensive care unit. DATA SOURCES: Recent and relevant literature from MEDLINE and authors' personal databases. STUDY SELECTION: Studies on pulmonary artery catheter use and use of other monitoring devices in critically ill patients. DATA EXTRACTION: Based largely on clinical experience and assessment of the relevant published literature and in response to recent articles attacking the pulmonary artery catheter, we propose that the pulmonary artery catheter is still a valuable tool for the hemodynamic monitoring of patients with complex disease processes in whom the information obtained from the pulmonary artery catheter may influence management. We suggest that there is a need to revisit the basics of hemodynamic management and reassess the way in which the pulmonary artery catheter is used, applying three key principles: correct measurement, correct data interpretation, and correct application. CONCLUSION: The pulmonary artery catheter is still a valuable tool for hemodynamic monitoring when used in selected patients and by physicians adequately trained to correctly interpret and apply the data provided.
Resumo:
In this paper we present the results from the coverage and the orbit determination accuracy simulations performed within the recently completed ESA study “Assessment Study for Space Based Space Surveillance (SBSS) Demonstration System” (Airbus Defence and Space consortium). This study consisted in investigating the capability of a space based optical sensor (SBSS) orbiting in low Earth orbit (LEO) to detect and track objects in GEO (geosynchronous orbit), MEO (medium Earth orbit) and LEO and to determinate and improve initial orbits from such observations. Space based systems may achieve better observation conditions than ground based sensors in terms of astrometric accuracy, detection coverage, and timeliness. The primary observation mode of the proposed SBSS demonstrator is GEO surveillance, i.e. the systematic search and detection of unknown and known objects. GEO orbits are specific and unique orbits from dynamical point of view. A space-based sensor may scan the whole GEO ring within one sidereal day if the orbit and pointing directions are chosen properly. For an efficient survey, our goal was to develop a leak-proof GEO fence strategy. Collaterally, we show that also MEO, LEO and other (GTO,Molniya, etc.) objects would be possible to observe by the system and for a considerable number of LEO objects to down to size of 1 cm we can obtain meaningful statistical data for improvement and validation of space debris environment models
Resumo:
Post-1949 Han migration to Xinjiang Uyghur Autonomous Region in northwest China is a hotly debated issue among the Xinjiang scholars and within the region itself. While it is often discussed using statistical data as a large-scale historical process, I argue in this article for a more differentiated view of Han migrants. I demonstrate that in the popular discourse migrants are distinguished into numerous categories like Bingtuaners , Profit-Driven Migrants, Border Supporters, Qualified Personnel, Educated Youth, and others. Accordingly, I argue that Han migrants to Xinjiang should not be understood as a homogeneous category of participants in a singular state project intended to establish state control over the region. High return rates demonstrate that state attempts to make Han settle in Xinjiang are only partly successful, and that migrants follow their own strategies when situation permits, rather than fulfill the government’s plans. Individuals who have migrated since the 1980s are especially careful in their assessment of the economic incentives of settlement, and many decide to remain mobile.
Resumo:
Since no single experimental or modeling technique provides data that allow a description of transport processes in clays and clay minerals at all relevant scales, several complementary approaches have to be combined to understand and explain the interplay between transport relevant phenomena. In this paper molecular dynamics simulations (MD) were used to investigate the mobility of water in the interlayer of montmorillonite (Mt), and to estimate the influence of mineral surfaces and interlayer ions on the water diffusion. Random Walk (RW) simulations based on a simplified representation of pore space in Mt were used to estimate and understand the effect of the arrangement of Mt particles on the meso- to macroscopic diffusivity of water. These theoretical calculations were complemented with quasielastic neutron scattering (QENS) measurements of aqueous diffusion in Mt with two pseudo-layers of water performed at four significantly different energy resolutions (i.e. observation times). The size of the interlayer and the size of Mt particles are two characteristic dimensions which determine the time dependent behavior of water diffusion in Mt. MD simulations show that at very short time scales water dynamics has the characteristic features of an oscillatory motion in the cage formed by neighbors in the first coordination shell. At longer time scales, the interaction of water with the surface determines the water dynamics, and the effect of confinement on the overall water mobility within the interlayer becomes evident. At time scales corresponding to an average water displacement equivalent to the average size of Mt particles, the effects of tortuosity are observed in the meso- to macroscopic pore scale simulations. Consistent with the picture obtained in the simulations, the QENS data can be described using a (local) 3D diffusion at short observation times, whereas at sufficiently long observation times a 2D diffusive motion is clearly observed. The effects of tortuosity measured in macroscopic tracer diffusion experiments are in qualitative agreement with RW simulations. By using experimental data to calibrate molecular and mesoscopic theoretical models, a consistent description of water mobility in clay minerals from the molecular to the macroscopic scale can be achieved. In turn, simulations help in choosing optimal conditions for the experimental measurements and the data interpretation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The impact of human activities on the fire regime in southern Switzerland was studied using (pre)historical charcoal and pollen data from lake sediments and statistical data from the 20th century. The cultural impact on forest fire was established by correlating charcoal-influx data with pollen percentages of anthropogenic indicators such as Plantago lanceolata, the Cerealia (sum of Avena t., Triticum t. and Hordeum t.) and Secale. During the 20th century, fire frequency was correlated with precipitation, dry and very dry periods and landscape management indicators. The effects of human activity on the fire regime are clearly recognisable since at least the Neolithic period. Using palaeoecological or statistical data, the variations in fire regime originating from anthropogenic actions may be differentiated from those due to climatic changes if they are sufficiently conspicuous.
Resumo:
Background: It is yet unclear if there are differences between using electronic key feature problems (KFPs) or electronic case-based multiple choice questions (cbMCQ) for the assessment of clinical decision making. Summary of Work: Fifth year medical students were exposed to clerkships which ended with a summative exam. Assessment of knowledge per exam was done by 6-9 KFPs, 9-20 cbMCQ and 9-28 MC questions. Each KFP consisted of a case vignette and three key features (KF) using “long menu” as question format. We sought students’ perceptions of the KFPs and cbMCQs in focus groups (n of students=39). Furthermore statistical data of 11 exams (n of students=377) concerning the KFPs and (cb)MCQs were compared. Summary of Results: The analysis of the focus groups resulted in four themes reflecting students’ perceptions of KFPs and their comparison with (cb)MCQ: KFPs were perceived as (i) more realistic, (ii) more difficult, (iii) more motivating for the intense study of clinical reasoning than (cb)MCQ and (iv) showed an overall good acceptance when some preconditions are taken into account. The statistical analysis revealed that there was no difference in difficulty; however KFP showed a higher discrimination and reliability (G-coefficient) even when corrected for testing times. Correlation of the different exam parts was intermediate. Conclusions: Students perceived the KFPs as more motivating for the study of clinical reasoning. Statistically KFPs showed a higher discrimination and higher reliability than cbMCQs. Take-home messages: Including KFPs with long menu questions into summative clerkship exams seems to offer positive educational effects.
Quaternary refugia of the sweet chestnut (Castanea sativa Mill.): an extended palynological approach
Resumo:
Knowledge about the glacial refugia of the thermophilous European Castanea sativa Mill. (sweet chestnut) is still inadequate. Its original range of distribution has been masked by strong human impact. Moreover, under natural conditions the species was probably admixed with other taxa (such as Quercus, Fraxinus, Fagus, Tilia) and thus possibly represented by low percentages in pollen records. In this paper we try to overcome the difficulties related to the scarcity and irregularity of chestnut pollen records by considering 1471 sites and extending the palynological approach to develop a Castanea refugium probability index (IRP), aimed at detecting possible chestnut refugia where chestnuts survived during the last glaciation. The results are in close agreement with the current literature on the refugia of other thermophilous European trees. The few divergences are most probably due to the large amount of new data integrated in this study, rather than to fundamental disagreements about data and data interpretation. The main chestnut refugia are located in the Transcaucasian region, north-western Anatolia, the hinterland of the Tyrrhenian coast from Liguria to Lazio along the Apennine range, the region around Lago di Monticchio (Monte Vulture) in southern Italy, and the Cantabrian coast on the Iberian peninsula. Despite the high likelihood of Castanea refugia in the Balkan Peninsula and north-eastern Italy (Colli Euganei, Monti Berici, Emilia-Romagna) as suggested by the IRP, additional palaeobotanical investigations are needed to assess whether these regions effectively sheltered chestnut during the last glaciation. Other regions, such as the Isère Département in France, the region across north-west Portugal and Galicia, and the hilly region along the Mediterranean coast of Syria and Lebanon were classified as areas of medium refugium probability. Our results reveal an unexpected spatial richness of potential Castanea refugia. It is likely that other European trees had similar distribution ranges during the last glaciation. It is thus conceivable that shelter zones with favourable microclimates were probably more numerous and more widely dispersed across Europe than so far assumed. In the future, more attention should be paid to pollen traces of sporadic taxa thought to have disappeared from a given area during the last glacial and post-glacial period.
Resumo:
Knowledge of the time interval from death (post-mortem interval, PMI) has an enormous legal, criminological and psychological impact. Aiming to find an objective method for the determination of PMIs in forensic medicine, 1H-MR spectroscopy (1H-MRS) was used in a sheep head model to follow changes in brain metabolite concentrations after death. Following the characterization of newly observed metabolites (Ith et al., Magn. Reson. Med. 2002; 5: 915-920), the full set of acquired spectra was analyzed statistically to provide a quantitative estimation of PMIs with their respective confidence limits. In a first step, analytical mathematical functions are proposed to describe the time courses of 10 metabolites in the decomposing brain up to 3 weeks post-mortem. Subsequently, the inverted functions are used to predict PMIs based on the measured metabolite concentrations. Individual PMIs calculated from five different metabolites are then pooled, being weighted by their inverse variances. The predicted PMIs from all individual examinations in the sheep model are compared with known true times. In addition, four human cases with forensically estimated PMIs are compared with predictions based on single in situ MRS measurements. Interpretation of the individual sheep examinations gave a good correlation up to 250 h post-mortem, demonstrating that the predicted PMIs are consistent with the data used to generate the model. Comparison of the estimated PMIs with the forensically determined PMIs in the four human cases shows an adequate correlation. Current PMI estimations based on forensic methods typically suffer from uncertainties in the order of days to weeks without mathematically defined confidence information. In turn, a single 1H-MRS measurement of brain tissue in situ results in PMIs with defined and favorable confidence intervals in the range of hours, thus offering a quantitative and objective method for the determination of PMIs.
Resumo:
High density spatial and temporal sampling of EEG data enhances the quality of results of electrophysiological experiments. Because EEG sources typically produce widespread electric fields (see Chapter 3) and operate at frequencies well below the sampling rate, increasing the number of electrodes and time samples will not necessarily increase the number of observed processes, but mainly increase the accuracy of the representation of these processes. This is namely the case when inverse solutions are computed. As a consequence, increasing the sampling in space and time increases the redundancy of the data (in space, because electrodes are correlated due to volume conduction, and time, because neighboring time points are correlated), while the degrees of freedom of the data change only little. This has to be taken into account when statistical inferences are to be made from the data. However, in many ERP studies, the intrinsic correlation structure of the data has been disregarded. Often, some electrodes or groups of electrodes are a priori selected as the analysis entity and considered as repeated (within subject) measures that are analyzed using standard univariate statistics. The increased spatial resolution obtained with more electrodes is thus poorly represented by the resulting statistics. In addition, the assumptions made (e.g. in terms of what constitutes a repeated measure) are not supported by what we know about the properties of EEG data. From the point of view of physics (see Chapter 3), the natural “atomic” analysis entity of EEG and ERP data is the scalp electric field