4 resultados para STATIC PROPERTIES

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of gap junction channels on cardiac impulse propagation is complex. This review focuses on the differential expression of connexins in the heart and the biophysical properties of gap junction channels under normal and disease conditions. Structural determinants of impulse propagation have been gained from biochemical and immunocytochemical studies performed on tissue extracts and intact cardiac tissue. These have defined the distinctive connexin coexpression patterns and relative levels in different cardiac tissues. Functional determinants of impulse propagation have emerged from electrophysiological experiments carried out on cell pairs. The static properties (channel number and conductance) limit the current flow between adjacent cardiomyocytes and thus set the basic conduction velocity. The dynamic properties (voltage-sensitive gating and kinetics of channels) are responsible for a modulation of the conduction velocity during propagated action potentials. The effect is moderate and depends on the type of Cx and channel. For homomeric-homotypic channels, the influence is small to medium; for homomeric-heterotypic channels, it is medium to strong. Since no data are currently available on heteromeric channels, their influence on impulse propagation is speculative. The modulation by gap junction channels is most prominent in tissues at the boundaries between cardiac tissues such as sinoatrial node-atrial muscle, atrioventricular node-His bundle, His bundle-bundle branch and Purkinje fibers-ventricular muscle. The data predict facilitation of orthodromic propagation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most languages fall into one of two camps: either they adopt a unique, static type system, or they abandon static type-checks for run-time checks. Pluggable types blur this division by (i) making static type systems optional, and (ii) supporting a choice of type systems for reasoning about different kinds of static properties. Dynamic languages can then benefit from static-checking without sacrificing dynamic features or committing to a unique, static type system. But the overhead of adopting pluggable types can be very high, especially if all existing code must be decorated with type annotations before any type-checking can be performed. We propose a practical and pragmatic approach to introduce pluggable type systems to dynamic languages. First of all, only annotated code is type-checked. Second, limited type inference is performed on unannotated code to reduce the number of reported errors. Finally, external annotations can be used to type third-party code. We present Typeplug, a Smalltalk implementation of our framework, and report on experience applying the framework to three different pluggable type systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To investigate the dosimetric properties of an electronic portal imaging device (EPID) for electron beam detection and to evaluate its potential for quality assurance (QA) of modulated electron radiotherapy (MERT). Methods: A commercially available EPID was used to detect electron beams shaped by a photon multileaf collimator (MLC) at a source-surface distance of 70 cm. The fundamental dosimetric properties such as reproducibility, dose linearity, field size response, energy response, and saturation were investigated for electron beams. A new method to acquire the flood-field for the EPID calibration was tested. For validation purpose, profiles of open fields and various MLC fields (square and irregular) were measured with a diode in water and compared to the EPID measurements. Finally, in order to use the EPID for QA of MERT delivery, a method was developed to reconstruct EPID two-dimensional (2D) dose distributions in a water-equivalent depth of 1.5 cm. Comparisons were performed with film measurement for static and dynamic monoenergy fields as well as for multienergy fields composed by several segments of different electron energies. Results: The advantageous EPID dosimetric properties already known for photons as reproducibility, linearity with dose, and dose rate were found to be identical for electron detection. The flood-field calibration method was proven to be effective and the EPID was capable to accurately reproduce the dose measured in water at 1.0 cm depth for 6 MeV, 1.3 cm for 9 MeV, and 1.5 cm for 12, 15, and 18 MeV. The deviations between the output factors measured with EPID and in water at these depths were within ±1.2% for all the energies with a mean deviation of 0.1%. The average gamma pass rate (criteria: 1.5%, 1.5 mm) for profile comparison between EPID and measurements in water was better than 99% for all the energies considered in this study. When comparing the reconstructed EPID 2D dose distributions at 1.5 cm depth to film measurements, the gamma pass rate (criteria: 2%, 2 mm) was better than 97% for all the tested cases. Conclusions: This study demonstrates the high potential of the EPID for electron dosimetry, and in particular, confirms the possibility to use it as an efficient verification tool for MERT delivery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone's material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of thirteen femora predicted the strength (R2=0.84, SEE=540 N, 16.2%), stiffness (R2=0.82, SEE=233 N/mm, 18.0%) and fracture energy (R2=0.72, SEE=3.85 J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation.