4 resultados para STATE NMR
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Classical liquid-state high-resolution (HR) NMR spectroscopy has proved a powerful tool in the metabonomic analysis of liquid food samples like fruit juices. In this paper the application of (1)H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy to apple tissue is presented probing its potential for metabonomic studies. The (1)H HR-MAS NMR spectra are discussed in terms of the chemical composition of apple tissue and compared to liquid-state NMR spectra of apple juice. Differences indicate that specific metabolic changes are induced by juice preparation. The feasibility of HR-MAS NMR-based multivariate analysis is demonstrated by a study distinguishing three different apple cultivars by principal component analysis (PCA). Preliminary results are shown from subsequent studies comparing three different cultivation methods by means of PCA and partial least squares discriminant analysis (PLS-DA) of the HR-MAS NMR data. The compounds responsible for discriminating organically grown apples are discussed. Finally, an outlook of our ongoing work is given including a longitudinal study on apples.
Resumo:
(1)H HR-MAS NMR spectroscopy was applied to apple tissue samples deriving from 3 different cultivars. The NMR data were statistically evaluated by analysis of variance (ANOVA), principal component analysis (PCA), and partial least-squares-discriminant analysis (PLS-DA). The intra-apple variability of the compounds was found to be significantly lower than the inter-apple variability within one cultivar. A clear separation of the three different apple cultivars could be obtained by multivariate analysis. Direct comparison of the NMR spectra obtained from apple tissue (with HR-MAS) and juice (with liquid-state HR NMR) showed distinct differences in some metabolites, which are probably due to changes induced by juice preparation. This preliminary study demonstrates the feasibility of (1)H HR-MAS NMR in combination with multivariate analysis as a tool for future chemometric studies applied to intact fruit tissues, e.g. for investigating compositional changes due to physiological disorders, specific growth or storage conditions.
Resumo:
Traditionally, critical swimming speed has been defined as the speed when a fish can no longer propel itself forward, and is exhausted. To gain a better understanding of the metabolic processes at work during a U(crit) swim test, and that lead to fatigue, we developed a method using in vivo (31)P-NMR spectroscopy in combination with a Brett-type swim tunnel. Our data showed that a metabolic transition point is reached when the fish change from using steady state aerobic metabolism to non-steady state anaerobic metabolism, as indicated by a significant increase in inorganic phosphate levels from 0.3+/-0.3 to 9.5+/-3.4 mol g(-1), and a drop in intracellular pH from 7.48+/-0.03 to 6.81+/-0.05 in muscle. This coincides with the point when the fish change gait from subcarangiform swimming to kick-and-glide bursts. As the number of kicks increased, so too did the Pi concentration, and the pH(i) dropped. Both changes were maximal at U(crit). A significant drop in Gibbs free energy change of ATP hydrolysis from -55.6+/-1.4 to -49.8+/-0.7 kJ mol(-1) is argued to have been involved in fatigue. This confirms earlier findings that the traditional definition of U(crit), unlike other critical points that are typically marked by a transition from aerobic to anaerobic metabolism, is the point of complete exhaustion of both aerobic and anaerobic resources.
Resumo:
The voltage-dependent anion-selective channel (VDAC) is an intrinsic β-barrel membrane protein located within the mitochondrial outer membrane where it serves as a pore, connecting the mitochondria to the cytosol. The high-resolution structures of both the human and murine VDACs have been resolved by X-ray diffraction and nuclear magnetic resonance spectroscopy (NMR) in 2008. However, the structural data are not completely in line with the findings that were obtained after decades of research on biochemical and functional analysis of VDAC. This discrepancy may be related to the fact that structural biology studies of membrane proteins reveal specific static conformations that may not necessarily represent the physiological state. For example, overexpression of membrane proteins in bacterial inclusion bodies or simply the extraction from the native lipid environment using harsh purification methods (i.e. chaotropic agents) can disturb the physiological conformations and the supramolecular assemblies. To address these potential issues, we have developed a method, allowing rapid one step purification of endogenous VDAC expressed in the native mitochondrial membrane without overexpression of recombinant protein or usage of harsh chaotropic extraction procedures. Using the Saccharomyces cerevisiae isoform 1 of VDAC as a model, this method yields efficient purification, preserving VDAC in a more physiological, native state following extraction from mitochondria. Single particle analysis using transmission electron microscopy (TEM) demonstrated conservation of oligomeric assembly after purification. Maintenance of the native state was evaluated using functional assessment that involves an ATP-binding assay by micro-scale thermophoresis (MST). Using this approach, we were able to determine for the first time the apparent KD for ATP of 1.2 mM.