5 resultados para STABILIZATION SYSTEM

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

STUDY DESIGN Biomechanical cadaveric study. OBJECTIVE To determine whether augmentation positively influence screw stability or not. SUMMARY OF BACKGROUND DATA Implantation of pedicle screws is a common procedure in spine surgery to provide an anchorage of posterior internal fixation into vertebrae. Screw performance is highly correlated to bone quality. Therefore, polymeric cement is often injected through specifically designed perforated pedicle screws into osteoporotic bone to potentially enhance screw stability. METHODS Caudocephalic dynamic loading was applied as quasi-physiological alternative to classical pull-out tests on 16 screws implanted in osteoporotic lumbar vertebrae and 20 screws in nonosteoporotic specimen. Load was applied using 2 different configurations simulating standard and dynamic posterior stabilization devices. Screw performance was quantified by measurement of screwhead displacement during the loading cycles. To reduce the impact of bone quality and morphology, screw performance was compared for each vertebra and averaged afterward. RESULTS All screws (with or without cement) implanted in osteoporotic vertebrae showed lower performances than the ones implanted into nonosteoporotic specimen. Augmentation was negligible for screws implanted into nonosteoporotic specimen, whereas in osteoporotic vertebrae pedicle screw stability was significantly increased. For dynamic posterior stabilization system an increase of screwhead displacement was observed in comparison with standard fixation devices in both setups. CONCLUSION Augmentation enhances screw performance in patients with poor bone stock, whereas no difference is observed for patients without osteoporosis. Furthermore, dynamic stabilization systems have the possibility to fail when implanted in osteoporotic bone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

STUDY DESIGN:: retrospective analysis of prospectively collected clinical data. OBJECTIVE:: To assess the long-term outcome of patients with monosegmental L4/5 degenerative spondylolisthesis treated with the dynamic Dynesys device. SUMMARY OF BACKGROUND DATA:: The Dynesys® system has been used as a semirigid, lumbar dorsal pedicular stabilization device since 1994. Good short-term results have been reported, but little is known about the long-term outcome following treatment for degenerative spondylolisthesis at the L4/5 level. METHODS:: 39 consecutive patients with symptomatic degenerative lumbar spondylolisthesis at the L4/5 level were treated with bilateral decompression and Dynesys instrumentation. At a mean follow-up of 7.2 years (range 5.0-11.2▒y) they underwent clinical and radiographic evaluation and quality of life assessment. RESULTS:: At final follow-up back pain improved in 89% and leg pain improved in 86% of patients compared to preoperative status. 83% of patients reported global subjective improvement. 92% would undergo the surgery again. 8 patients (21%) required further surgery due to symptomatic adjacent segment disease (6 cases), late onset infection (1 case), and screw breakage (1 case). In 9 cases radiological progression of spondylolisthesis at the operated segment was found. 74% of operated segments showed limited flexion-extension range of less than 4°. Adjacent segment pathology, though without clinical correlation, was diagnosed at the L5/S1 (17.9%) and L3/4 (28.2%) segments. In 4 cases asymptomatic screw loosening was observed. CONCLUSION:: Monosegmental Dynesys instrumentation of degenerative spondylolisthesis at L4/5 shows good long-term results. The rate of secondary surgeries is comparable to other dorsal instrumentation devices. Residual range of motion in the stabilized segment is reduced, and the rate of radiological and symptomatic adjacent segment degeneration is low. Patient satisfaction is high. Dynesys stabilization of symptomatic L4/5 degenerative spondylolisthesis is a possible alternative to other stabilization devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information on the relationship between cumulative fossil CO2 emissions and multiple climate targets is essential to design emission mitigation and climate adaptation strategies. In this study, the transient response of a climate or environmental variable per trillion tonnes of CO2 emissions, termed TRE, is quantified for a set of impact-relevant climate variables and from a large set of multi-forcing scenarios extended to year 2300 towards stabilization. An  ∼ 1000-member ensemble of the Bern3D-LPJ carbon–climate model is applied and model outcomes are constrained by 26 physical and biogeochemical observational data sets in a Bayesian, Monte Carlo-type framework. Uncertainties in TRE estimates include both scenario uncertainty and model response uncertainty. Cumulative fossil emissions of 1000 Gt C result in a global mean surface air temperature change of 1.9 °C (68 % confidence interval (c.i.): 1.3 to 2.7 °C), a decrease in surface ocean pH of 0.19 (0.18 to 0.22), and a steric sea level rise of 20 cm (13 to 27 cm until 2300). Linearity between cumulative emissions and transient response is high for pH and reasonably high for surface air and sea surface temperatures, but less pronounced for changes in Atlantic meridional overturning, Southern Ocean and tropical surface water saturation with respect to biogenic structures of calcium carbonate, and carbon stocks in soils. The constrained model ensemble is also applied to determine the response to a pulse-like emission and in idealized CO2-only simulations. The transient climate response is constrained, primarily by long-term ocean heat observations, to 1.7 °C (68 % c.i.: 1.3 to 2.2 °C) and the equilibrium climate sensitivity to 2.9 °C (2.0 to 4.2 °C). This is consistent with results by CMIP5 models but inconsistent with recent studies that relied on short-term air temperature data affected by natural climate variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

STUDY DESIGN Retrospective analysis of prospectively collected clinical data. OBJECTIVE To assess the long-term outcome of patients with monosegmental L4/5 degenerative spondylolisthesis treated with the dynamic Dynesys device. SUMMARY OF BACKGROUND DATA The Dynesys system has been used as a semirigid, lumbar dorsal pedicular stabilization device since 1994. Good short-term results have been reported, but little is known about the long-term outcome after treatment for degenerative spondylolisthesis at the L4/5 level. METHODS A total of 39 consecutive patients with symptomatic degenerative lumbar spondylolisthesis at the L4/5 level were treated with bilateral decompression and Dynesys instrumentation. At a mean follow-up of 7.2 years (range, 5.0-11.2 y), they underwent clinical and radiographic evaluation and quality of life assessment. RESULTS At final follow-up, back pain improved in 89% and leg pain improved in 86% of patients compared with preoperative status. Eighty-three percent of patients reported global subjective improvement. Ninety-two percent would undergo the surgery again. Eight patients (21%) required further surgery because of symptomatic adjacent segment disease (6 cases), late-onset infection (1 case), and screw breakage (1 case). In 9 cases, radiologic progression of spondylolisthesis at the operated segment was found. Seventy-four percent of operated segments showed limited flexion-extension range of <4 degrees. Adjacent segment pathology, although without clinical correlation, was diagnosed at the L5/S1 (17.9%) and L3/4 (28.2%) segments. In 4 cases, asymptomatic screw loosening was observed. CONCLUSIONS Monosegmental Dynesys instrumentation of degenerative spondylolisthesis at L4/5 shows good long-term results. The rate of secondary surgeries is comparable to other dorsal instrumentation devices. Residual range of motion in the stabilized segment is reduced, and the rate of radiologic and symptomatic adjacent segment degeneration is low. Patient satisfaction is high. Dynesys stabilization of symptomatic L4/5 degenerative spondylolisthesis is a possible alternative to other stabilization devices.