7 resultados para SPECTROSCOPIC ANALYSIS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Malaria parasite detoxifies free haem, released as a result of haemoglobin digestion, by converting it into an stable, crystalline, black brown pigment known as 'malaria pigment' or 'haemozoin'. Earlier studies have demonstrated the involvement of a parasite-specific enzyme 'haem polymerase' in the formation of haemozoin. However, recently it has been proposed that the polymerization of haem may be a spontaneous process that could take place by incubation of haematin with carboxylic acids (pH 4.2-5.0) even without presence of any parasitic or biological component (FEBS Letters, 352, 54-57 (1994). Here we report that no spontaneous haem polymerization occurs at physiological conditions and the product described in the study mentioned above is not haemozoin/beta-haematin (haem polymer) as characterized by us on the basis of solubility characteristics and thin layer chromatography. The infra-red spectroscopic analysis of the product formed though exhibits the bands corresponding to formation of iron-carboxylate bond, similar to that in haemozoin/beta-haematin, but was identified as haem-acid adduct. Thus polymerization of haem may not occur spontaneously under the reaction conditions corresponding to food vacuoles of the malarial parasite, the physiological site of haemozoin formation.
Resumo:
In extracts of senescent leaves of the tobacco plant Nicotiana rustica, two colorless compounds with UV/VIS characteristics of nonfluorescent chlorophyll catabolites (NCCs) were detected and tentatively identified as Nr-NCCs. These two polar NCCs were found in similar amounts in the fresh extracts, and their constitutions could be determined by spectroscopic analysis. The data showed both of the two Nr-NCCs to have the same tetrapyrrolic core structure, as reported previously for all other NCCs from senescent higher plants. In the less polar catabolite, named Nr-NCC-2, this core structure was conjugated with a glucopyranose unit, as similarly discovered earlier in Bn-NCC-2, an NCC from oilseed rape (Brassica napus). The more polar NCC from tobacco leaves, Nr-NCC-1, carried an additional malonyl substituent at the 6′-OH group of the glucopyranosyl moiety. Partial (enzyme-catalyzed) hydrolysis of Nr-NCC-1 gave Nr-NCC-2, while enzyme-catalyzed malonylation of Nr-NCC-2 gave Nr-NCC-1, establishing the identity of their basic tetrapyrrole structure. In earlier work (on the polar NCCs from oilseed rape), only separate glucopyranosyl and malonyl functionalities were detected. Nr-NCC-1, thus, represents a further variant of the structures of NCCs from senescent higher plants and exhibits an unprecedented peripheral refunctionalization in chlorophyll catabolites.
Resumo:
OBJECT: In this study, 1H magnetic resonance (MR) spectroscopy was prospectively tested as a reliable method for presurgical grading of neuroepithelial brain tumors. METHODS: Using a database of tumor spectra obtained in patients with histologically confirmed diagnoses, 94 consecutive untreated patients were studied using single-voxel 1H spectroscopy (point-resolved spectroscopy; TE 135 msec, TE 135 msec, TR 1500 msec). A total of 90 tumor spectra obtained in patients with diagnostic 1H MR spectroscopy examinations were analyzed using commercially available software (MRUI/VARPRO) and classified using linear discriminant analysis as World Health Organization (WHO) Grade I/II, WHO Grade III, or WHO Grade IV lesions. In all cases, the classification results were matched with histopathological diagnoses that were made according to the WHO classification criteria after serial stereotactic biopsy procedures or open surgery. Histopathological studies revealed 30 Grade I/II tumors, 29 Grade III tumors, and 31 Grade IV tumors. The reliability of the histological diagnoses was validated considering a minimum postsurgical follow-up period of 12 months (range 12-37 months). Classifications based on spectroscopic data yielded 31 tumors in Grade I/II, 32 in Grade III, and 27 in Grade IV. Incorrect classifications included two Grade II tumors, one of which was identified as Grade III and one as Grade IV; two Grade III tumors identified as Grade II; two Grade III lesions identified as Grade IV; and six Grade IV tumors identified as Grade III. Furthermore, one glioblastoma (WHO Grade IV) was classified as WHO Grade I/II. This represents an overall success rate of 86%, and a 95% success rate in differentiating low-grade from high-grade tumors. CONCLUSIONS: The authors conclude that in vivo 1H MR spectroscopy is a reliable technique for grading neuroepithelial brain tumors.
Resumo:
The mechanism underlying the mineralization of bone is well studied and yet it remains controversial. Inherent difficulties of imaging mineralized tissues and the aqueous solubility of calcium and phosphate, the 2 ions which combine to form bone mineral crystals, limit current analyses of labile diffusible, amorphous, and crystalline intermediates by electron microscopy. To improve the retention of calcium and phosphorus, we developed a pseudo nonaqueous processing approach and used it to characterize biomineralization foci, extracellular sites of hydroxyapatite deposition in osteoblastic cell cultures. Since mineralization of UMR106-01 osteoblasts is temporally synchronized and begins 78 h after plating, we used these cultures to evaluate the effectiveness of our method when applied to cells just prior to the formation of the first mineral crystals. Our approach combines for the first time 3 well-established methods with a fourth one, i.e. dry ultrathin sectioning. Dry ultrathin sectioning with an oscillating diamond knife was used to produce electron spectroscopic images of mineralized biomineralization foci which were high-pressure frozen and freeze substituted. For comparison, cultures were also treated with conventional processing and wet sectioning. The results show that only the use of pseudo nonaqueous processing was able to detect extracellular sites of early calcium and phosphorus enrichment at 76 h, several hours prior to detection of mineral crystals within biomineralization foci.
Resumo:
A transmission electron microscope (TEM) accessory, the energy filter, enables the establishment of a method for elemental microanalysis, the electron energy-loss spectroscopy (EELS). In conventional TEM, unscattered, elastic, and inelastic scattered electrons contribute to image information. Energy-filtering TEM (EFTEM) allows elemental analysis at the ultrastructural level by using selected inelastic scattered electrons. EELS is an excellent method for elemental microanalysis and nanoanalysis with good sensitivity and accuracy. However, it is a complex method whose potential is seldom completely exploited, especially for biological specimens. In addition to spectral analysis, parallel-EELS, we present two different imaging techniques in this chapter, namely electron spectroscopic imaging (ESI) and image-EELS. We aim to introduce these techniques in this chapter with the elemental microanalysis of titanium. Ultrafine, 22-nm titanium dioxide particles are used in an inhalation study in rats to investigate the distribution of nanoparticles in lung tissue.
Resumo:
The Greenland NEEM (North Greenland Eemian Ice Drilling) operation in 2010 provided the first opportunity to combine trace-gas measurements by laser spectroscopic instruments and continuous-flow analysis along a freshly drilled ice core in a field-based setting. We present the resulting atmospheric methane (CH4) record covering the time period from 107.7 to 9.5 ka b2k (thousand years before 2000 AD). Companion discrete CH4 measurements are required to transfer the laser spectroscopic data from a relative to an absolute scale. However, even on a relative scale, the high-resolution CH4 data set significantly improves our knowledge of past atmospheric methane concentration changes. New significant sub-millennial-scale features appear during interstadials and stadials, generally associated with similar changes in water isotopic ratios of the ice, a proxy for local temperature. In addition to the midpoint of Dansgaard–Oeschger (D/O) CH4 transitions usually used for cross-dating, sharp definition of the start and end of these events brings precise depth markers (with ±20 cm uncertainty) for further cross-dating with other palaeo- or ice core records, e.g. speleothems. The method also provides an estimate of CH4 rates of change. The onsets of D/O events in the methane signal show a more rapid rate of change than their endings. The rate of CH4 increase associated with the onsets of D/O events progressively declines from 1.7 to 0.6 ppbv yr−1 in the course of marine isotope stage 3. The largest observed rate of increase takes place at the onset of D/O event #21 and reaches 2.5 ppbv yr−1.