4 resultados para SPATIOTEMPORAL GROWTH

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Growing evidence suggests environmental change to be most severe across the semi-arid subtropics, with past, present and projected drying of the Mediterranean Basin posing a key multidisciplinary challenge. Consideration of a single climatic factor, however, often fails to explain spatiotemporal growth dynamics of drought-prone ecosystems. Here, we present annually resolved and absolutely dated ring width measurements of 871 Scots pines (Pinus sylvestris) from 18 individual plot sites in the Central Spanish Pinar Grande forest reserve. Although comprising tree ages from 6 to 175 years, this network correlates surprisingly well with the inverse May–July diurnal temperature range (r = 0.84; p < 0.00011956–2011). Ring width extremes were triggered by pressure anomalies of the North Atlantic Oscillation, and the long-term growth decline coincided with Iberian-wide drying since the mid-1970s. Climate model simulations not only confirm this negative trend over the last decades but also project drought to continuously increase over the 21st century. Associated ecological effects and socio-economic consequences should be considered to improve adaptation strategies of agricultural and forest management, as well as biodiversity conservation and ecosystem service.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim To evaluate the climate sensitivity of model-based forest productivity estimates using a continental-scale tree-ring network. Location Europe and North Africa (30–70° N, 10° W–40° E). Methods We compiled close to 1000 annually resolved records of radial tree growth for all major European tree species and quantified changes in growth as a function of historical climatic variation. Sites were grouped using a neural network clustering technique to isolate spatiotemporal and species-specific climate response patterns. The resulting empirical climate sensitivities were compared with the sensitivities of net primary production (NPP) estimates derived from the ORCHIDEE-FM and LPJ-wsl dynamic global vegetation models (DGVMs). Results We found coherent biogeographic patterns in climate response that depend upon (1) phylogenetic controls and (2) ambient environmental conditions delineated by latitudinal/elevational location. Temperature controls dominate forest productivity in high-elevation and high-latitude areas whereas moisture sensitive sites are widespread at low elevation in central and southern Europe. DGVM simulations broadly reproduce the empirical patterns, but show less temperature sensitivity in the boreal zone and stronger precipitation sensitivity towards the mid-latitudes. Main conclusions Large-scale forest productivity is driven by monthly to seasonal climate controls, but our results emphasize species-specific growth patterns under comparable environmental conditions. Furthermore, we demonstrate that carry-over effects from the previous growing season can significantly influence tree growth, particularly in areas with harsh climatic conditions – an element not considered in most current-state DGVMs. Model–data discrepancies suggest that the simulated climate sensitivity of NPP will need refinement before carbon-cycle climate feedbacks can be accurately quantified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphogenesis occurs in 3D space over time and is guided by coordinated gene expression programs. Here we use postembryonic development in Arabidopsis plants to investigate the genetic control of growth. We demonstrate that gene expression driving the production of the growth-stimulating hormone gibberellic acid and downstream growth factors is first induced within the radicle tip of the embryo. The center of cell expansion is, however, spatially displaced from the center of gene expression. Because the rapidly growing cells have very different geometry from that of those at the tip, we hypothesized that mechanical factors may contribute to this growth displacement. To this end we developed 3D finite-element method models of growing custom-designed digital embryos at cellular resolution. We used this framework to conceptualize how cell size, shape, and topology influence tissue growth and to explore the interplay of geometrical and genetic inputs into growth distribution. Our simulations showed that mechanical constraints are sufficient to explain the disconnect between the experimentally observed spatiotemporal patterns of gene expression and early postembryonic growth. The center of cell expansion is the position where genetic and mechanical facilitators of growth converge. We have thus uncovered a mechanism whereby 3D cellular geometry helps direct where genetically specified growth takes place.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The secondary metabolites in the roots, leaves and flowers of the common dandelion (Taraxacum officinale agg.) have been studied in detail. However, little is known about the specific constituents of the plant’s highly specialized laticifer cells. Using a combination of liquid and gas chromatography, mass spectrometry and nuclear magnetic resonance spectrometry, we identified and quantified the major secondary metabolites in the latex of different organs across different growth stages in three genotypes, and tested the activity of the metabolites against the generalist root herbivore Diabrotica balteata. We found that common dandelion latex is dominated by three classes of secondary metabolites: phenolic inositol esters (PIEs), triterpene acetates (TritAc) and the sesquiterpene lactone taraxinic acid β-d-glucopyranosyl ester (TA-G). Purification and absolute quantification revealed concentrations in the upper mg g−1 range for all compound classes with up to 6% PIEs, 5% TritAc and 7% TA-G per gram latex fresh weight. Contrary to typical secondary metabolite patterns, concentrations of all three classes increased with plant age. The highest concentrations were measured in the main root. PIE profiles differed both quantitatively and qualitatively between plant genotypes, whereas TritAc and TA-G differed only quantitatively. Metabolite concentrations were positively correlated within and between the different compound classes, indicating tight biosynthetic co-regulation. Latex metabolite extracts strongly repelled D. balteata larvae, suggesting that the latex constituents are biologically active.