6 resultados para SPARC
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In adult skeletal muscle, abluminal sprouting or longitudinal splitting of capillaries can be initiated separately by muscle overload and elevated microcirculation shear stress respectively. In the present study, gene and protein expression patterns associated with the different forms of angiogenesis were examined using a targeted gene array (Superarray), validated by quantitative RT (reverse transcription)-PCR and immunoblots. Sprouting angiogenesis induced large changes in expression levels in genes associated with extracellular matrix remodelling, such as MMP-2 (matrix metalloproteinase-2), TIMP (tissue inhibitor of metalloproteinases), SPARC (secreted protein, acidic and rich in cysteine) and thrombospondin. Changes in neuropilin, midkine and restin levels, which may underpin changes in endothelial morphology, were seen during splitting angiogenesis. Up-regulation of VEGF (vascular endothelial growth factor), Flk-1, angiopoietin-2 and PECAM-1 (platelet/endothelial cell adhesion molecule-1) was seen in both forms of angiogenesis, representing a common angiogenic response of endothelial cells. In conclusion, the present study demonstrates that general angiogenic signals from growth factors can be influenced by the local microenvironment resulting in differing forms of capillary growth to produce a co-ordinated expansion of the vascular bed.
Resumo:
INTRODUCTION: Impact on sexual function has received little attention in the medical literature for a long time. Because of the site of insertion of permanent tension free vaginal tape (TVT) the G spot might be affected or the tape might interfere with arousal and sensory stimulation. Recent studies have reported varying degrees of sexual impairment after TVT insertion ranging from 0% to 15% including dyspareunia. AIM: The aim of this study was to evaluate sexual function before and after suburethral sling removal due to postoperative female de novo dyspareunia. As a secondary outcome, general patients' satisfaction with their overall continence situation was assessed. PATIENTS AND METHODS: Between December 2005 and December 2007, we included 18 female patients who complained of de novo dyspareunia after suburethral sling insertion for urinary stress incontinence. All patients filled in an FSFI questionnaire prior to sling removal and at 3 months postoperatively. Additionally, all women were asked to estimate their general satisfaction regarding their continence situation using a Visual Analogue Scale (VAS) from 0 to 10, with 0 being the least satisfying situation and 10 being the most satisfying situation. All patients underwent gynaecological examination including ICS-pelvic organ prolapse staging (ICS-POP score). RESULTS: Of the 18 slings, ten were transobturator tapes (6 x TVT-O, 2 x Monarch, 2 x unknown) and eight were retropubic tapes (7 x TVT, 1 x SPARC). Desire, arousal, lubrication, satisfaction, and pain improved statistically significant. Orgasm scores were low with median scoring of 1.5 scores before and 1.0 scores after sling removal, and they did not change significantly after sling removal. The satisfaction rate deteriorated from a median of 7 (95% confidence interval [CI] 6.3-7.7) to a median of 4 (95% CI 3.7-5.1; p=0.99) but not statistically significant. CONCLUSIONS: Sexual function in patients with de novo dyspareunia is likely to improve after sling removal but not in all domains. Bladder function may deteriorate.
Resumo:
The regenerative pathways during periosteal distraction osteogenesis may be influenced by the local environment composed by cells, growth factors, nutrition and mechanical load. The aim of the present study was to evaluate the influence of two protocols of periosteal distraction on bone formation. Custom made distraction devices were surgically fixed onto the calvariae of 60 rabbits. After an initial healing period of 7 days, two groups of animals were submitted to distraction rates of 0.25 and 0.5 mm/24 h for 10 days, respectively. Six animals per group were sacrificed 10 (mid-distraction), 17 (end-distraction), 24 (1-week consolidation), 31 (2-week consolidation) and 77 days (2-month consolidation) after surgery. Newly formed bone was assessed by means of micro-CT and histologically. Expression of transcripts encoding tissue-specific genes (BMP-2, RUNX2, ACP5, SPARC, collagen I α1, collagen II α1 and SOX9) was analyzed by quantitative PCR. Two patterns of bone formation were observed, originating from the old bone surface in Group I and from the periosteum in Group II. Bone volume (BV) and bone mineral density (BMD) significantly increased up to the 2-month consolidation period within the groups (p < 0.05). Significantly more bone was observed in Group II compared to Group I at the 2-month consolidation period (p < 0.001). Expression of transcripts encoding osteogenic genes in bone depended on the time-point of observation (p < 0.05). Low level of transcripts reveals an indirect role of periosteum in the osteogenic process. Two protocols of periosteal distraction in the present model resulted in moderate differences in terms of bone formation.
Growth hormone replacement therapy regulates microRNA-29a and targets involved in insulin resistance
Resumo:
Replacement of growth hormone (GH) in patients suffering from GH deficiency (GHD) offers clinical benefits on body composition, exercise capacity, and skeletal integrity. However, GH replacement therapy (GHRT) is also associated with insulin resistance, but the mechanisms are incompletely understood. We demonstrate that in GH-deficient mice (growth hormone-releasing hormone receptor (Ghrhr)(lit/lit)), insulin resistance after GHRT involves the upregulation of the extracellular matrix (ECM) and the downregulation of microRNA miR-29a in skeletal muscle. Based on RNA deep sequencing of skeletal muscle from GH-treated Ghrhr(lit/lit) mice, we identified several upregulated genes as predicted miR-29a targets that are negative regulators of insulin signaling or profibrotic/proinflammatory components of the ECM. Using gain- and loss-of-function studies, five of these genes were confirmed as endogenous targets of miR-29a in human myotubes (PTEN, COL3A1, FSTL1, SERPINH1, SPARC). In addition, in human myotubes, IGF1, but not GH, downregulated miR-29a expression and upregulated COL3A1. These results were confirmed in a group of GH-deficient patients after 4 months of GHRT. Serum IGF1 increased, skeletal muscle miR-29a decreased, and miR-29a targets were upregulated in patients with a reduced insulin response (homeostatic model assessment of insulin resistance (HOMA-IR)) after GHRT. We conclude that miR-29a could contribute to the metabolic response of muscle tissue to GHRT by regulating ECM components and PTEN. miR-29a and its targets might be valuable biomarkers for muscle metabolism following GH replacement. KEY MESSAGES GHRT most significantly affects the ECM cluster in skeletal muscle from mice. GHRT downregulates miR-29a and upregulates miR-29a targets in skeletal muscle from mice. PTEN, COL3A1, FSTL1, SERPINH1, and SPARC are endogenous miR-29a targets in human myotubes. IGF1 decreases miR-29a levels in human myotubes. miR-29a and its targets are regulated during GHRT in skeletal muscle from humans.