23 resultados para SPACE MISSION
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We measured the elemental composition on a sample of Allende meteorite with a miniature laser ablation mass spectrometer. This Laser Mass Spectrometer (LMS) has been designed and built at the University of Bern in the Department of Space Research and Planetary Sciences with the objective of using such an instrument on a space mission. Utilising the meteorite Allende as the test sample in this study, it is demonstrated that the instrument allows the in situ determination of the elemental composition and thus mineralogy and petrology of untreated rocky samples, particularly on planetary surfaces. In total, 138 measurements of elemental compositions have been carried out on an Allende sample. The mass spectrometric data are evaluated and correlated with an optical image. It is demonstrated that by illustrating the measured elements in the form of mineralogical maps, LMS can serve as an element imaging instrument with a very high spatial resolution of µm scale. The detailed analysis also includes a mineralogical evaluation and an investigation of the volatile element content of Allende. All findings are in good agreement with published data and underline the high sensitivity, accuracy and capability of LMS as a mass analyser for space exploration.
Resumo:
The CHaracterising ExOPlanet Satellite (CHEOPS) is a joint ESA-Switzerland space mission (expected to launch in 2017) dedicated to search for exoplanet transits by means of ultra-high precision photometry. CHEOPS will provide accurate radii for planets down to Earth size. Targets will mainly come from radial velocity surveys. The CHEOPS instrument is an optical space telescope of 30 cm clear aperture with a single focal plane CCD detector. The tube assembly is passively cooled and thermally controlled to support high precision, low noise photometry. The telescope feeds a re-imaging optic, which supports the straylight suppression concept to achieve the required Signal to Noise. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
High reflective materials in the microwave region play a very important role in the realization of antenna reflectors for a broad range of applications, including radiometry. These reflectors have a characteristic emissivity which needs to be characterized accurately in order to perform a correct radiometric calibration of the instrument. Such a characterization can be performed by using open resonators, waveguide cavities or by radiometric measurements. The latter consists of comparative radiometric observations of absorbers, reference mirrors and the sample under test, or using the cold sky radiation as a direct reference source. While the first two mentioned techniques are suitable for the characterization of metal plates and mirrors, the latter has the advantages to be also applicable to soft materials. This paper describes how, through this radiometric techniques, it is possible to characterize the emissivity of the sample relative to a reference mirror and how to characterize the absolute emissivity of the latter by performing measurements at different incident angles. The results presented in this paper are based on our investigations on emissivity of a multilayer insulation material (MLI) for space mission, at the frequencies of 22 and 90 GHz.
Resumo:
This paper presents the capabilities of a Space-Based Space Surveillance (SBSS) demonstration mission for Space Surveillance and Tracking (SST) based on a micro-satellite platform. The results have been produced in the frame of ESA’s "Assessment Study for Space Based Space Surveillance Demonstration Mission" performed by the Airbus Defence and Space consortium. The assessment of SBSS in an SST system architecture has shown that both an operational SBSS and also already a well- designed space-based demonstrator can provide substantial performance in terms of surveillance and tracking of beyond-LEO objects. Especially the early deployment of a demonstrator, possible by using standard equipment, could boost initial operating capability and create a self-maintained object catalogue. Furthermore, unique statistical information about small-size LEO debris (mm size) can be collected in-situ. Unlike classical technology demonstration missions, the primary goal is the demonstration and optimisation of the functional elements in a complex end-to-end chain (mission planning, observation strategies, data acquisition, processing, etc.) until the final products can be offered to the users and with low technological effort and risk. The SBSS system concept takes the ESA SST System Requirements into account and aims at fulfilling SST core requirements in a stand-alone manner. Additionally, requirements for detection and characterisation of small-sizedLEO debris are considered. The paper presents details of the system concept, candidate micro-satellite platforms, the instrument design and the operational modes. Note that the detailed results of performance simulations for space debris coverage and cataloguing accuracy are presented in a separate paper “Capability of a Space-based Space Surveillance System to Detect and Track Objects in GEO, MEO and LEO Orbits” by J. Silha (AIUB) et al., IAC-14, A6, 1.1x25640.
Resumo:
Navigation of deep space probes is most commonly operated using the spacecraft Doppler tracking technique. Orbital parameters are determined from a series of repeated measurements of the frequency shift of a microwave carrier over a given integration time. Currently, both ESA and NASA operate antennas at several sites around the world to ensure the tracking of deep space probes. Just a small number of software packages are nowadays used to process Doppler observations. The Astronomical Institute of the University of Bern (AIUB) has recently started the development of Doppler data processing capabilities within the Bernese GNSS Software. This software has been extensively used for Precise Orbit Determination of Earth orbiting satellites using GPS data collected by on-board receivers and for subsequent determination of the Earth gravity field. In this paper, we present the currently achieved status of the Doppler data modeling and orbit determination capabilities in the Bernese GNSS Software using GRAIL data. In particular we will focus on the implemented orbit determination procedure used for the combined analysis of Doppler and intersatellite Ka-band data. We show that even at this earlier stage of the development we can achieve an accuracy of few mHz on two-way S-band Doppler observation and of 2 µm/s on KBRR data from the GRAIL primary mission phase.
Resumo:
Currently, observations of space debris are primarily performed with ground-based sensors. These sensors have a detection limit at some centimetres diameter for objects in Low Earth Orbit (LEO) and at about two decimetres diameter for objects in Geostationary Orbit (GEO). The few space-based debris observations stem mainly from in-situ measurements and from the analysis of returned spacecraft surfaces. Both provide information about mostly sub-millimetre-sized debris particles. As a consequence the population of centimetre- and millimetre-sized debris objects remains poorly understood. The development, validation and improvement of debris reference models drive the need for measurements covering the whole diameter range. In 2003 the European Space Agency (ESA) initiated a study entitled “Space-Based Optical Observation of Space Debris”. The first tasks of the study were to define user requirements and to develop an observation strategy for a space-based instrument capable of observing uncatalogued millimetre-sized debris objects. Only passive optical observations were considered, focussing on mission concepts for the LEO, and GEO regions respectively. Starting from the requirements and the observation strategy, an instrument system architecture and an associated operations concept have been elaborated. The instrument system architecture covers the telescope, camera and onboard processing electronics. The proposed telescope is a folded Schmidt design, characterised by a 20 cm aperture and a large field of view of 6°. The camera design is based on the use of either a frame-transfer charge coupled device (CCD), or on a cooled hybrid sensor with fast read-out. A four megapixel sensor is foreseen. For the onboard processing, a scalable architecture has been selected. Performance simulations have been executed for the system as designed, focussing on the orbit determination of observed debris particles, and on the analysis of the object detection algorithms. In this paper we present some of the main results of the study. A short overview of the user requirements and observation strategy is given. The architectural design of the instrument is discussed, and the main tradeoffs are outlined. An insight into the results of the performance simulations is provided.