17 resultados para SONIC HEDGEHOG
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Objectives Pharyngeal arches develop in the head and neck regions, and give rise to teeth, oral jaws, the hyoid bone, operculum, gills, and pharyngeal jaws in teleosts. In this study, the expression patterns of genes in the sonic hedgehog (shh), wnt, ectodysplasin A (eda), and bone morphogenetic protein (bmp) pathways were investigated in the pharyngeal arches of Haplochromis piceatus, one of the Lake Victoria cichlids. Furthermore, the role of the shh pathway in pharyngeal arch development in H. piceatus larvae was investigated. Methods The expression patterns of lymphocyte enhancer binding factor 1 (lef1), ectodysplasin A receptor (edar), shh, patched 1 (ptch1), bmp4, sp5 transcription factor (sp5), sclerostin domain containing 1a (sostdc1a), and dickkopf 1 (dkk1) were investigated in H. piceatus larvae by in situ hybridization. The role of the shh pathway was investigated through morphological phenotypic characterization after its inhibition. Results We found that lef1, edar, shh, ptch1, bmp4, dkk1, sostdc1a, and sp5 were expressed not only in the teeth, but also in the operculum and gill filaments of H piceatus larvae. After blocking the shh pathway using cyclopamine, we observed ectopic shh expression and the disappearance of ptch1 expression. After six weeks of cyclopamine treatment, an absence of teeth in the oral upper jaws and a poor outgrowth of premaxilla, operculum, and gill filaments in juvenile H. piceatus were observed. Conclusions These results suggest that the shh pathway is important for the development of pharyngeal arch derivatives such as teeth, premaxilla, operculum, and gill filaments in H. piceatus.
Resumo:
The mammalian Cutl1 gene codes for the CCAAT displacement protein (CDP), which has been implicated as a transcriptional repressor in diverse processes such as terminal differentiation, cell cycle progression, and the control of nuclear matrix attachment regions. To investigate the in vivo function of Cutl1, we have replaced the C-terminal Cut repeat 3 and homeodomain exons with an in-frame lacZ gene by targeted mutagenesis in the mouse. The CDP-lacZ fusion protein is retained in the cytoplasm and fails to repress gene transcription, indicating that the Cutl1(lacZ) allele corresponds to a null mutation. Cutl1 mutant mice on inbred genetic backgrounds are born at Mendelian frequency, but die shortly after birth because of retarded differentiation of the lung epithelia, which indicates an essential role of CDP in lung maturation. A less pronounced delay in lung development allows Cutl1 mutant mice on an outbred background to survive beyond birth. These mice are growth-retarded and develop an abnormal pelage because of disrupted hair follicle morphogenesis. The inner root sheath (IRS) is reduced, and the transcription of Sonic hedgehog and IRS-specific genes is deregulated in Cutl1 mutant hair follicles, consistent with the specific expression of Cutl1 in the progenitors and cell lineages of the IRS. These data implicate CDP in cell-lineage specification during hair follicle morphogenesis, which resembles the role of the related Cut protein in specifying cell fates during Drosophila development.
Resumo:
Ellis-van Creveld (EvC) syndrome is a human autosomal recessive disorder caused by a mutation in either the EVC or EVC2 gene, and presents with short limbs, polydactyly, and ectodermal and heart defects. The aim of this study was to understand the pathologic basis by which deletions in the EVC2 gene lead to chondrodysplastic dwarfism and to describe the morphologic, immunohistochemical, and molecular hallmarks of EvC syndrome in cattle. Five Grey Alpine calves, with a known mutation in the EVC2 gene, were autopsied. Immunohistochemistry was performed on bone using antibodies to collagen II, collagen X, sonic hedgehog, fibroblast growth factor 2, and Ki67. Reverse transcription polymerase chain reaction was performed to analyze EVC1 and EVC2 gene expression. Autopsy revealed long bones that were severely reduced in length, as well as genital and heart defects. Collagen II was detected in control calves in the resting, proliferative, and hypertrophic zones and in the primary and secondary spongiosa, with a loss of labeling in the resting zone of 2 dwarfs. Collagen X was expressed in hypertrophic zone in the controls but was absent in the EvC cases. In affected calves and controls, sonic hedgehog labeled hypertrophic chondrocytes and primary and secondary spongiosa similarly. FGF2 was expressed in chondrocytes of all growth plate zones in the control calves but was lost in most EvC cases. The Ki67 index was lower in cases compared with controls. EVC and EVC2 transcripts were detected. Our data suggest that EvC syndrome of Grey Alpine cattle is a disorder of chondrocyte differentiation, with accelerated differentiation and premature hypertrophy of chondrocytes, and could be a spontaneous model for the equivalent human disease.
Resumo:
Medulloblastoma (MB) is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K) pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi)-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α) was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH) subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation.
Resumo:
Medulloblastoma is the most common malignant childhood brain tumor and is associated with a poor outcome. There is an urgent need to develop novel targeted therapeutic approaches for medulloblastoma, which will arise from an enhanced understanding of the disease at the molecular level. Medulloblastoma has been recognized to be a heterogeneous disease, and no recurrent cancer gene mutations have been found, although many of the mutations described so far affect key intracellular signaling pathways, such as sonic hedgehog (SHH) and Wnt/β-catenin. The PI3K/AKT/mTOR (PAM) signaling pathway controls key cellular responses, such as cell growth and proliferation, survival, migration and metabolism. Over the last decades, it has been recognized that this intracellular signaling pathway is frequently activated by genetic and epigenetic alterations in malignant brain tumors, including medulloblastoma. Clinical trials have started to evaluate the safety and efficacy of agents targeting this pathway in malignant brain tumors. Due to the complexity of the PAM signaling pathway, there remain significant difficulties in the development of novel therapeutic approaches. The future challenges in developing effective treatments for cancer patients include the development of predictive biomarkers and combinatorial approaches to effectively target multiple signal transduction pathways. In this review article, we will summarize the current knowledge about the role of PAM signaling in medulloblastoma and discuss the strategies that are currently being evaluated with targeted agents against this pathway.
Resumo:
This paper reports on the results of a research project, on comparing one virtual collaborative environment with a first-person visual immersion (first-perspective interaction) and a second one where the user interacts through a sound-kinetic virtual representation of himself (avatar), as a stress-coping environment in real-life situations. Recent developments in coping research are proposing a shift from a trait-oriented approach of coping to a more situation-specific treatment. We defined as real-life situation a target-oriented situation that demands a complex coping skills inventory of high self-efficacy and internal or external "locus of control" strategies. The participants were 90 normal adults with healthy or impaired coping skills, 25-40 years of age, randomly spread across two groups. There was the same number of participants across groups and gender balance within groups. All two groups went through two phases. In Phase I, Solo, one participant was assessed using a three-stage assessment inspired by the transactional stress theory of Lazarus and the stress inoculation theory of Meichenbaum. In Phase I, each participant was given a coping skills measurement within the time course of various hypothetical stressful encounters performed in two different conditions and a control group. In Condition A, the participant was given a virtual stress assessment scenario relative to a first-person perspective (VRFP). In Condition B, the participant was given a virtual stress assessment scenario relative to a behaviorally realistic motion controlled avatar with sonic feedback (VRSA). In Condition C, the No Treatment Condition (NTC), the participant received just an interview. In Phase II, all three groups were mixed and exercised the same tasks but with two participants in pairs. The results showed that the VRSA group performed notably better in terms of cognitive appraisals, emotions and attributions than the other two groups in Phase I (VRSA, 92%; VRFP, 85%; NTC, 34%). In Phase II, the difference again favored the VRSA group against the other two. These results indicate that a virtual collaborative environment seems to be a consistent coping environment, tapping two classes of stress: (a) aversive or ambiguous situations, and (b) loss or failure situations in relation to the stress inoculation theory. In terms of coping behaviors, a distinction is made between self-directed and environment-directed strategies. A great advantage of the virtual collaborative environment with the behaviorally enhanced sound-kinetic avatar is the consideration of team coping intentions in different stages. Even if the aim is to tap transactional processes in real-life situations, it might be better to conduct research using a sound-kinetic avatar based collaborative environment than a virtual first-person perspective scenario alone. The VE consisted of two dual-processor PC systems, a video splitter, a digital camera and two stereoscopic CRT displays. The system was programmed in C++ and VRScape Immersive Cluster from VRCO, which created an artificial environment that encodes the user's motion from a video camera, targeted at the face of the users and physiological sensors attached to the body.
Resumo:
INTRODUCTION: The aim of apical surgery is to hermetically seal the root canal system after root-end resection, thereby enabling periradicular healing. The objective of this nonrandomized prospective clinical study was to report results of 2 different root-end preparation and filling methods, ie, mineral trioxide aggregate (MTA) and an adhesive resin composite (Retroplast). METHODS: The study included 353 consecutive cases with endodontic lesions limited to the periapical area. Root-end cavities were prepared with sonic microtips and filled with MTA (n = 178), or alternatively, a shallow concavity was prepared in the cut root face, with subsequent placement of an adhesive resin composite (Retroplast) (n = 175). Patients were recalled after 1 year. Cases were defined as healed when no clinical signs or symptoms were present and radiographs demonstrated complete or incomplete (scar tissue) healing of previous radiolucencies. RESULTS: The overall rate of healed cases was 85.5%. MTA-treated teeth demonstrated a significantly (P = .003) higher rate of healed cases (91.3%) compared with Retroplast-treated teeth (79.5%). Within the MTA group, 89.5%-100% of cases were classified as healed, depending on the type of treated tooth. In contrast, more variable rates ranging from 66.7%-100% were found in the Retroplast group. In particular, mandibular premolars and molars demonstrated considerably lower rates of healed cases when treated with Retroplast. CONCLUSIONS: MTA can be recommended for root-end filling in apical surgery, irrespective of the type of treated tooth. Retroplast should be used with caution for root-end sealing in apical surgery of mandibular premolars and molars.
Resumo:
Root canal treatment is a frequently performed dental procedure and is carried out on teeth in which irreversible pulpitis has led to necrosis of the dental pulp. Removal of the necrotic tissue remnants and cleaning and shaping of the root canal are important phases of root canal treatment. Treatment options include the use of hand and rotary instruments and methods using ultrasonic or sonic equipment. OBJECTIVES: The objectives of this systematic review of randomized controlled trials were to determine the relative clinical effectiveness of hand instrumentation versus ultrasonic instrumentation alone or in conjunction with hand instrumentation for orthograde root canal treatment of permanent teeth. MATERIAL AND METHODS: The search strategy retrieved 226 references from the Cochrane Oral Health Group Trials Register (7), the Cochrane Central Register of Controlled Trials (CENTRAL) (12), MEDLINE (192), EMBASE (8) and LILACS (7). No language restriction was applied. The last electronic search was conducted on December 13th, 2007. Screening of eligible studies was conducted in duplicate and independently. RESULTS: Results were to be expressed as fixed-effect or random-effects models using mean differences for continuous outcomes and risk ratios for dichotomous outcomes with 95% confidence intervals. Heterogeneity was to be investigated including both clinical and methodological factors. No eligible randomized controlled trials were identified. CONCLUSIONS: This review illustrates the current lack of published or ongoing randomized controlled trials and the unavailability of high-level evidence based on clinically relevant outcomes referring to the effectiveness of ultrasonic instrumentation used alone or as an adjunct to hand instrumentation for orthograde root canal treatment. In the absence of reliable research-based evidence, clinicians should base their decisions on clinical experience, individual circumstances and in conjunction with patients' preferences where appropriate. Future randomized controlled trials might focus more closely on evaluating the effectiveness of combinations of these interventions with an emphasis on not only clinically relevant, but also patient-centered outcomes.
Resumo:
To assess clinical and microbiological outcomes of an Er:YAG laser in comparison with sonic debridement in the treatment of persistent periodontal pockets in a prospective randomized controlled multicentre study design.
Resumo:
To compare the prediction of hip fracture risk of several bone ultrasounds (QUS), 7062 Swiss women > or =70 years of age were measured with three QUSs (two of the heel, one of the phalanges). Heel QUSs were both predictive of hip fracture risk, whereas the phalanges QUS was not. INTRODUCTION: As the number of hip fracture is expected to increase during these next decades, it is important to develop strategies to detect subjects at risk. Quantitative bone ultrasound (QUS), an ionizing radiation-free method, which is transportable, could be interesting for this purpose. MATERIALS AND METHODS: The Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk (SEMOF) study is a multicenter cohort study, which compared three QUSs for the assessment of hip fracture risk in a sample of 7609 elderly ambulatory women > or =70 years of age. Two QUSs measured the heel (Achilles+; GE-Lunar and Sahara; Hologic), and one measured the heel (DBM Sonic 1200; IGEA). The Cox proportional hazards regression was used to estimate the hazard of the first hip fracture, adjusted for age, BMI, and center, and the area under the ROC curves were calculated to compare the devices and their parameters. RESULTS: From the 7609 women who were included in the study, 7062 women 75.2 +/- 3.1 (SD) years of age were prospectively followed for 2.9 +/- 0.8 years. Eighty women reported a hip fracture. A decrease by 1 SD of the QUS variables corresponded to an increase of the hip fracture risk from 2.3 (95% CI, 1.7, 3.1) to 2.6 (95% CI, 1.9, 3.4) for the three variables of Achilles+ and from 2.2 (95% CI, 1.7, 3.0) to 2.4 (95% CI, 1.8, 3.2) for the three variables of Sahara. Risk gradients did not differ significantly among the variables of the two heel QUS devices. On the other hand, the phalanges QUS (DBM Sonic 1200) was not predictive of hip fracture risk, with an adjusted hazard risk of 1.2 (95% CI, 0.9, 1.5), even after reanalysis of the digitalized data and using different cut-off levels (1700 or 1570 m/s). CONCLUSIONS: In this elderly women population, heel QUS devices were both predictive of hip fracture risk, whereas the phalanges QUS device was not.
Resumo:
The circuitous cell signalling pathways of hepatocytes comprise several factors that operate to downgrade or even interrupt the transmission of a given signal. These down-regulating influences are essential to keep cell proliferation and cell survival in check and if impaired, can alter a delicate balance in favour of cell proliferation. Each signalling pathway that has been implicated in carcinogenesis is influenced by both oncogenic factors that promote tumour growth when activated as well as tumour suppressor proteins that have to be impaired to favour tumour growth. This summary of the Tumour Suppressors in Liver Carcinogenesis Symposium held at the 2007 EASL Annual Meeting discusses four pathways with pre-eminent tumour suppressor activity, each involved in hepatocarcinogenesis: p53, mTOR, beta-catenin and hedgehog.
Resumo:
Site-1 protease (S1P) has an essential function in the conversion of latent, membrane-bound transcription factors to their free, active form. In mammals, abundant expression of S1P in chondrocytes suggests an involvement in chondrocyte function. To determine the requirement of S1P in cartilage and bone development, we have created cartilage-specific S1P knockout mice (S1P(cko)). S1P(cko) mice exhibit chondrodysplasia and a complete lack of endochondral ossification even though Runx2 expression, Indian hedgehog signaling, and osteoblastogenesis is intact. However, there is a substantial increase in chondrocyte apoptosis in the cartilage of S1P(cko) mice. Extraction of type II collagen is substantially lower from S1P(cko) cartilage. In S1P(cko) mice, the collagen network is disorganized and collagen becomes entrapped in chondrocytes. Ultrastructural analysis reveals that the endoplasmic reticulum (ER) in S1P(cko) chondrocytes is engorged and fragmented in a manner characteristic of severe ER stress. These data suggest that S1P activity is necessary for a specialized ER stress response required by chondrocytes for the genesis of normal cartilage and thus endochondral ossification.
Resumo:
Interleukin-26 (IL26) is a member of the IL10 cytokine family. The IL26 gene is located between two other well-known cytokines genes of this family encoding interferon-gamma (IFNG) and IL22 in an evolutionary conserved gene cluster. In contrast to humans and most other mammals, mice lack a functional Il26 gene. We analyzed the genome sequences of other vertebrates for the presence or absence of functional IL26 orthologs and found that the IL26 gene has also become inactivated in several equid species. We detected a one-base pair frameshift deletion in exon 2 of the IL26 gene in the domestic horse (Equus caballus), Przewalski horse (Equus przewalskii) and donkey (Equus asinus). The remnant IL26 gene in the horse is still transcribed and gives rise to at least five alternative transcripts. None of these transcripts share a conserved open reading frame with the human IL26 gene. A comparative analysis across diverse vertebrates revealed that the IL26 gene has also independently been inactivated in a few other mammals, including the African elephant and the European hedgehog. The IL26 gene thus appears to be highly variable, and the conserved open reading frame has been lost several times during mammalian evolution.
Resumo:
Extracorporeal shock waves are defined as a sequence of sonic pulses characterized by high peak pressure over 100 MPa, fast pressure rise, and short lifecycle. In the 1980s extracorporeal shock wave lithotripsy (ESWL) was first used for the treatment of urolithiasis. Orthopedic surgeons use extracorporeal shock wave therapy (ESWT) to treat non-union fractures, tendinopathies and osteonecrosis. The first application of ESWT in dermatology was for recalcitrant skin ulcers. Several studies in the last 10 years have shown that ESWT promotes angiogenesis, increases perfusion in ischemic tissues, decreases inflammation, enhances cell differentiation and accelerates wound healing. We successfully treated a non-healing chronic venous leg ulcer with ESWT. Furthermore we observed an improvement of the lymphatic drainage after application of ESWT. We are confident that ESWT is a non-invasive, practical, safe and efficient physical treatment modality for recalcitrant leg ulcers.