2 resultados para SON enhanced algorithm
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The purpose of this study was to assess the performance of a new motion correction algorithm. Twenty-five dynamic MR mammography (MRM) data sets and 25 contrast-enhanced three-dimensional peripheral MR angiographic (MRA) data sets which were affected by patient motion of varying severeness were selected retrospectively from routine examinations. Anonymized data were registered by a new experimental elastic motion correction algorithm. The algorithm works by computing a similarity measure for the two volumes that takes into account expected signal changes due to the presence of a contrast agent while penalizing other signal changes caused by patient motion. A conjugate gradient method is used to find the best possible set of motion parameters that maximizes the similarity measures across the entire volume. Images before and after correction were visually evaluated and scored by experienced radiologists with respect to reduction of motion, improvement of image quality, disappearance of existing lesions or creation of artifactual lesions. It was found that the correction improves image quality (76% for MRM and 96% for MRA) and diagnosability (60% for MRM and 96% for MRA).
Resumo:
Aim of this paper is to evaluate the diagnostic contribution of various types of texture features in discrimination of hepatic tissue in abdominal non-enhanced Computed Tomography (CT) images. Regions of Interest (ROIs) corresponding to the classes: normal liver, cyst, hemangioma, and hepatocellular carcinoma were drawn by an experienced radiologist. For each ROI, five distinct sets of texture features are extracted using First Order Statistics (FOS), Spatial Gray Level Dependence Matrix (SGLDM), Gray Level Difference Method (GLDM), Laws' Texture Energy Measures (TEM), and Fractal Dimension Measurements (FDM). In order to evaluate the ability of the texture features to discriminate the various types of hepatic tissue, each set of texture features, or its reduced version after genetic algorithm based feature selection, was fed to a feed-forward Neural Network (NN) classifier. For each NN, the area under Receiver Operating Characteristic (ROC) curves (Az) was calculated for all one-vs-all discriminations of hepatic tissue. Additionally, the total Az for the multi-class discrimination task was estimated. The results show that features derived from FOS perform better than other texture features (total Az: 0.802+/-0.083) in the discrimination of hepatic tissue.