26 resultados para SOIL PROPERTIES
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertility and climate regulation, but the factors that control these stocks at regional and national scales are unknown, particularly when their composition and stability are considered. As a result, their mapping relies on either unreliable proxy measures or laborious direct measurements. Using data from an extensive national survey of English grasslands, we show that surface soil (0–7 cm) C stocks in size fractions of varying stability can be predicted at both regional and national scales from plant traits and simple measures of soil and climatic conditions. Soil C stocks in the largest pool, of intermediate particle size (50–250 μm), were best explained by mean annual temperature (MAT), soil pH and soil moisture content. The second largest C pool, highly stable physically and biochemically protected particles (0·45–50 μm), was explained by soil pH and the community abundance-weighted mean (CWM) leaf nitrogen (N) content, with the highest soil C stocks under N-rich vegetation. The C stock in the small active fraction (250–4000 μm) was explained by a wide range of variables: MAT, mean annual precipitation, mean growing season length, soil pH and CWM specific leaf area; stocks were higher under vegetation with thick and/or dense leaves. Testing the models describing these fractions against data from an independent English region indicated moderately strong correlation between predicted and actual values and no systematic bias, with the exception of the active fraction, for which predictions were inaccurate. Synthesis and applications. Validation indicates that readily available climate, soils and plant survey data can be effective in making local- to landscape-scale (1–100 000 km2) soil C stock predictions. Such predictions are a crucial component of effective management strategies to protect C stocks and enhance soil C sequestration.
Resumo:
This paper aims to further our understanding of pre-Columbian agricultural systems in the Llanos de Moxos, Bolivia. Three different types of raised fields co-existing in the same site near the community of Exaltación, in north-western Beni, were studied. The morphology, texture and geochemistry of the soils of these fields and the surrounding area were analysed. Differences in field design have often been associated with the diversity of cultural practices. Our results suggest that in the study area differences in field shape, height and layout are primarily the result of an adaptation to the local edaphology. By using the technology of raised fields, pre-Columbian people were able to drain and cultivate soils with very different characteristics, making the land suitable for agriculture and possibly different crops. This study also shows that some fields in the Llanos de Moxos were built to prolong the presence of water, allowing an additional cultivation period in the dry season and/or in times of drought. Nevertheless, the nature of the highly weathered soils suggests that raised fields were not able to support large populations and their management required long fallow periods.
Resumo:
The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C:N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the composition and the activity of the soil fauna community.
Resumo:
Soil degradation is a major problem in the agriculturally dominated country of Tajikistan, which makes it necessary to determine and monitor the state of soils. For this purpose a soil spectral library was established as it enables the determination of soil properties with relatively low costs and effort. A total of 1465 soil samples were collected from three 10x10 km test sites in western Tajikistan. The diffuse reflectance of the samples was measured with a FieldSpec PRO FR from ASD in the spectral range from 380 to 2500 nm in laboratory. 166 samples were finally selected based on their spectral information and analysed on total C and N, organic C, pH, CaCO₃, extractable P, exchangeable Ca, Mg and K, and the fractions clay, silt and sand. Multiple linear regression was used to set up the models. Two third of the chemically analysed samples were used to calibrate the models, one third was used for hold-out validation. Very good prediction accuracy was obtained for total C (R² = 0.76, RMSEP = 4.36 g kg⁻¹), total N (R² = 0.83, RMSEP = 0.30 g kg⁻¹) and organic C (R² = 0.81, RMSEP = 3.30 g kg⁻¹), good accuracy for pH (R² = 0.61, RMSEP = 0.157) and CaCO3(R² = 0.72, RMSEP = 4.63 %). No models could be developed for extractable P, exchangeable Ca, Mg and K, and the fractions clay, silt and sand. It can be concluded that the spectral library approach has a high potential to substitute standard laboratory methods where rapid and inexpensive analysis is required.
Resumo:
River floodplain soils are sinks and potential sources for toxic trace metals like Cu and Zn. We hypothesize that stable Cu and Zn isotope ratios reflect both the mobilization and the sources of metals. We determined the soil properties, the concentrations and partitioning of Cu and Zn, and variations in δ65Cu and δ66Zn values in a core obtained from an Aquic Udifluvent developed on a freshwater intertidal mudflat of the River Elbe, Germany. The core was sampled at 2 cm intervals to a depth of 34 cm, which corresponds to approximately 9 yr of sedimentation. Elevated concentrations of Cu (up to 320 μg g−1) and Zn (up to 2080 μg g−1) indicated anthropogenic pollution. At the time of sampling the redox conditions changed from oxic (Eh 200 to 400 mV, above 22 cm deep) to strongly anoxic conditions (-100 to -200 mV, below 22 cm deep). The δ65Cu values varied systematically with depth (from -0.02 to 0.16‰) and were correlated with the Fe, C, and N concentrations. Although pre-depositional variations cannot be ruled out, the systematic variation with depth suggests post-sedimentation fractionation of δ65Cu in response to seasonally variable organic matter deposition and redox conditions. In contrast, the δ66ZnIRMM values were uniform (from -0.07 to 0.01‰) throughout the core, indicating that the Zn isotopes did not significantly fractionate after deposition and that the Zn sources were homogeneous throughout the sedimentation.
Resumo:
The natural abundance of stable Se isotopes in methylselenides reflects sources and formation conditions of methylselenides. We tested the effects of (i) different inorganic Se species spiked to soils and (ii) different soil samples on the extent of fungal biomethylation of Se and the Se isotope ratios (δ82/76Se) in methylselenides. Furthermore, we assessed the decrease of dissolved, bioavailable Se during three days of equilibration of the soils with Se-enriched solutions. We conducted closed microcosm experiments containing soil spiked with Se(IV) or Se(VI), a growth medium, and the fungus species Alternaria alternata for 11 d. The concentrations and isotope ratios of Se were determined in all components of the microcosm with multicollector ICP-MS. The equilibration of the spiked Se(IV) and Se(VI) for 3 d resulted in a decrease of dissolved, bioavailable Se concentrations by 32 to 44% and 8 to 14%, respectively. Very little isotope fractionation occurred during this phase, and it can be attributed to mixing of the added Se with the pre-existing Se in the soils and minor Se(IV) reduction in one experiment. In two of the incubated soils – moderately acidic roadside and garden soils – between 9.1 and 30% of the supplied Se(IV) and 1.7% of the supplied Se(VI) were methylated while in a strongly acidic forest soil no Se methylation occurred. The methylselenides derived from Se(IV) were strongly depleted in 82Se (δ82/76Se = − 3.3 to − 4.5‰) compared with the soil (0.16–0.45‰) and the added Se(IV) (0.20‰). The methylselenide yield of the incubations with Se(VI) was too small for isotope measurements. Our results demonstrate that Se source species and soil properties influence the extent of Se biomethylation and that the produced methylselenides contain isotopically light Se.
Resumo:
There is much interest in the identification of the main drivers controlling changes in the microbial community that may be related to sustainable land use. We examined the influence of soil properties and land-use intensity (N fertilization, mowing, grazing) on total phospholipid fatty acid (PLFA) biomass, microbial community composition (PLFA profiles) and activities of enzymes involved in the C, N, and P cycle. These relationships were examined in the topsoil of grasslands from three German regions (Schorfheide-Chorin (SCH), Hainich-Dun (HAI), Schwabische Alb (ALB)) with different parent material. Differences in soil properties explained 60% of variation in PLFA data and 81% of variation in enzyme activities across regions and land-use intensities. Degraded peat soils in the lowland areas of the SCH with high organic carbon (OC) concentrations and sand content contained lower PLFA biomass, lower concentrations of bacterial, fungal, and arbuscular mycorrhizal PLFAs, but greater enzyme activities, and specific enzyme activities (per unit microbial biomass) than mineral soils in the upland areas of the HAI and ALB, which are finer textured, drier, and have smaller OC concentrations. After extraction of variation that originated from large-scale differences among regions and differences in land-use intensities between plots, soil properties still explained a significant amount of variation in PLFA data (34%) and enzyme activities (60%). Total PLFA biomass and all enzyme activities were mainly related to OC concentration, while relative abundance of fungi and fungal to bacterial ratio were mainly related to soil moisture. Land-use intensity (LUI) significantly decreased the soil C:N ratio. There was no direct effect of LUI on total PLFA biomass, microbial community composition, N and P cycling enzyme activities independent of study region and soil properties. In contrast, the activities and specific activities of enzymes involved in the C cycle increased significantly with LUI independent of study region and soil properties, which can have impact on soil organic matter decomposition and nutrient cycling. Our findings demonstrate that microbial biomass and community composition as well as enzyme activities are more controlled by soil properties than by grassland management at the regional scale. (C) 2013 Elsevier B.V: All rights reserved.
Resumo:
Temporal dynamics create unique and often ephemeral conditions that can influence soil microbial biogeography at different spatial scales. This study investigated the relation between decimeter to meter spatial variability of soil microbial community structure, plant diversity, and soil properties at six dates from April through November. We also explored the robustness of these interactions over time. An historically unfertilized, unplowed grassland in southwest Germany was selected to characterize how seasonal variability in the composition of plant communities and substrate quality changed the biogeography of soil microorganisms at the plot scale (10 m x 10 m). Microbial community spatial structure was positively correlated with the local environment, i.e. physical and chemical soil properties, in spring and autumn, while the density and diversity of plants had an additional effect in the summer period. Spatial relationships among plant and microbial communities were detected only in the early summer and autumn periods when aboveground biomass increase was most rapid and its influence on soil microbial communities was greatest due to increased demand by plants for nutrients. Individual properties exhibited varying degrees of spatial structure over the season. Differential responses of Gram positive and Gram negative bacterial communities to seasonal shifts in soil nutrients were detected. We concluded that spatial distribution patterns of soil microorganisms change over a season and that chemical soil properties are more important controlling factors than plant density and diversity. Finer spatial resolution, such as the mm to cm scale, as well as taxonomic resolution of microbial groups, could help determine the importance of plant species density, composition, and growth stage in shaping microbial community composition and spatial patterns. (C) 2014 The Authors. Published by Elsevier Ltd. All rights reserved.
Resumo:
Ecosystems are faced with high rates of species loss which has consequences for their functions and services. To assess the effects of plant species diversity on the nitrogen (N) cycle, we developed a model for monthly mean nitrate (NO3-N) concentrations in soil solution in 0-30 cm mineral soil depth using plant species and functional group richness and functional composition as drivers and assessing the effects of conversion of arable land to grassland, spatially heterogeneous soil properties, and climate. We used monthly mean NO3-N concentrations from 62 plots of a grassland plant diversity experiment from 2003 to 2006. Plant species richness (1-60) and functional group composition (1-4 functional groups: legumes, grasses, non-leguminous tall herbs, non-leguminous small herbs) were manipulated in a factorial design. Plant community composition, time since conversion from arable land to grassland, soil texture, and climate data (precipitation, soil moisture, air and soil temperature) were used to develop one general Bayesian multiple regression model for the 62 plots to allow an in-depth evaluation using the experimental design. The model simulated NO3-N concentrations with an overall Bayesian coefficient of determination of 0.48. The temporal course of NO3-N concentrations was simulated differently well for the individual plots with a maximum plot-specific Nash-Sutcliffe Efficiency of 0.57. The model shows that NO3-N concentrations decrease with species richness, but this relation reverses if more than approx. 25 % of legume species are included in the mixture. Presence of legumes increases and presence of grasses decreases NO3-N concentrations compared to mixtures containing only small and tall herbs. Altogether, our model shows that there is a strong influence of plant community composition on NO3-N concentrations.
Resumo:
Soils are fundamental to ensuring water, energy and food security. Within the context of sus- tainable food production, it is important to share knowledge on existing and emerging tech- nologies that support land and soil monitoring. Technologies, such as remote sensing, mobile soil testing, and digital soil mapping, have the potential to identify degraded and non- /little-responsive soils, and may also provide a basis for programmes targeting the protection and rehabilitation of soils. In the absence of such information, crop production assessments are often not based on the spatio-temporal variability in soil characteristics. In addition, uncertain- ties in soil information systems are notable and build up when predictions are used for monitor- ing soil properties or biophysical modelling. Consequently, interpretations of model-based results have to be done cautiously. As such they provide a scientific, but not always manage- able, basis for farmers and/or policymakers. In general, the key incentives for stakeholders to aim for sustainable management of soils and more resilient food systems are complex at farm as well as higher levels. The same is true of drivers of soil degradation. The decision- making process aimed at sustainable soil management, be that at farm or higher level, also in- volves other goals and objectives valued by stakeholders, e.g. land governance, improved envi- ronmental quality, climate change adaptation and mitigation etc. In this dialogue session we will share ideas on recent developments in the discourse on soils, their functions and the role of soil and land information in enhancing food system resilience.
Resumo:
Despite various research activities in the last decades across the world, many challenges remain to integrate the concept of ecosystem services (ESS) in decision-making, and a coherent approach to assess and value ESS is still lacking. There are a lot of different – often context-specific – ESS frameworks with their own definitions and understanding of terms. Based on a thorough review, the EU FP7 project RECARE (www.recare-project.eu) suggests an adapted framework for ecosystem services related to soils that can be used for practical application in preventing and remediating degradation of soils in Europe. This lays the foundation for the development and selection of appropriate methods to measure, evaluate, communicate and negotiate the services we obtain from soils with stakeholders in order to improve land management. Similar to many ESS frameworks, the RECARE framework distinguishes between an ecosystem and human well-being part. As the RECARE project is focused on soil threats, this is the starting point on the ecosystem part of the framework. Soil threats affect natural capital, such as soil, water, vegetation, air and animals, and are in turn influenced by those. Within the natural capital, the RECARE framework focuses especially on soil and its properties, classified in inherent and manageable properties. The natural capital then enables and underpins soil processes, while at the same time being affected by those. Soil processes, finally, are the ecosystem’s capacity to provide services, thus they support the provision of soil functions and ESS. ESS may be utilized to produce benefits for individuals and human society. Those benefits are explicitly or implicitly valued by individuals and human society. The values placed on those benefits influence policy and decision-making and thus lead to a societal response. Individual (e.g. farmers’) and societal decision making and policy determine land management and other (human) driving forces, which in turn affect soil threats and natural capital. In order to improve ESS with Sustainable Land Management (SLM) – i.e. measures aimed to prevent or remediate soil threats, the services identified in the framework need to be “manageable” (modifiable) for the stakeholders. To this end, effects of soil threats and prevention / remediation measures are captured by key soil properties as well as through bio-physical (e.g. reduced soil loss), socio-economic (e.g. reduced workload) and socio-cultural (e.g. aesthetics) impact indicators. In order to use such indicators in RECARE, it should be possible to associate the changes in soil processes to impacts of prevention / remediation measures (SLM). This requires the indicators to be sensitive enough to small changes, but still sufficiently robust to provide evidence of the change and attribute it to SLM.
Resumo:
The maintenance of separated diploid and polyploid populations within a contact zone is possible due to both prezygotic and postzygotic isolation mechanisms. Niche differentiation between two cytotypes may be an important prezygotic isolating mechanism and can be studied using reciprocal transplant experiments. We investigated niche differentiation between diploid and hexaploid Aster amellus in their contact zone in the Czech Republic. Diploid populations are confined to habitats with low productivity, whereas hexaploid populations occur in habitats with both low and high productivity. Thus, we chose three diploid populations and six hexaploid populations, three in each of the two different habitat types. We analyzed habitat characteristics and carried out reciprocal transplant experiments in the field using both seeds and adult plants. Sites of diploid and hexaploid populations differed significantly in vegetation and soil properties. The mean number of juveniles was higher at sites of home ploidy level than at sites of foreign ploidy level, suggesting niche differentiation between the two cytotypes. On the other hand, transplanted adult plants survived at all sites and juvenile plants were able to establish at some sites of the foreign cytotype. Furthermore, the mean number of juveniles, survival, and flowering percentages were higher at home sites than at foreign sites, indicating local adaptation. We conclude that niche differentiation between the two cytotypes and local adaptation within each cytotype may contribute to the maintenance of diploid and hexaploid populations of A. amellus in their contact zone. Moreover, further factors, such as differences in flowering phenology and exclusion of minority cytotypes, should also be considered.
Resumo:
We evaluated the effects of soil properties and climate on concentrations of parent and oxygenated polycyclic aromatic compounds (PAHs and OPAHs) and azaarenes (AZAs) in topsoil and subsoil at 20 sites along a 2100-km north (N)–south (S) transect in Argentina. The concentrations of Σ29PAHs, Σ15OPAHs and Σ4AZAs ranged 2.4–38 ng g− 1, 0.05–124 ng g− 1 and not detected to 0.97 ng g− 1, respectively. With decreasing anthropogenic influence from N to S, low molecular weight PAHs increasingly dominated. The octanol–water partitioning coefficients correlated significantly with the subsoil to topsoil concentration ratios of most compounds suggesting leaching as the main transport process. Organic C concentrations correlated significantly with those of many compounds typical for atmosphere–soil partitioning. Lighter OPAHs were mainly detected in the S suggesting biological sources and heavier OPAHs in the N suggesting a closer association with parent-PAHs. Decreasing alkyl-naphthalene/naphthalene and 9,10-anthraquinone (9,10-ANQ)/anthracene ratios from N to S indicated that 9,10-ANQ might have originated from low-temperature combustion.