62 resultados para SLOW RELAXATION
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Slow Relaxation of the Magnetization in Non-Linear Optical Active Layered Mixed Metal Oxalate Chains
Resumo:
We investigated the inflammatory response to, and the osteoinductive efficacies of, four polymers (collagen, Ethisorb, PLGA and Polyactive) that bore either an adsorbed (fast-release kinetics) or a calcium-phosphate-coating-incorporated (slow-release kinetics) depot of BMP-2. Titanium-plate-supported discs of each polymer (n = 6 per group) were implanted at an ectopic (subcutaneous) ossification site in rats (n = 48). Five weeks later, they were retrieved for a histomorphometric analysis of the volumes of ectopic bone and foreign-body giant cells (a gauge of inflammatory reactivity), and the degree of polymer degradation. For each polymer, the osteoinductive efficacy of BMP-2 was higher when it was incorporated into a coating than when it was directly adsorbed onto the material. This mode of BMP-2 carriage was consistently associated with an attenuation of the inflammatory response. For coated materials, the volume density of foreign-body giant cells was inversely correlated with the volume density of bone (r(2) = 0.96), and the volume density of bone was directly proportional to the surface-area density of the polymer (r(2) = 0.97). Following coating degradation, other competitive factors, such as the biocompatibility and the biodegradability of the polymer itself, came into play.
Resumo:
To (1) establish the feasibility of texture analysis for the in vivo assessment of biochemical changes in meniscal tissue on delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC), and (2) compare textural with conventional T1 relaxation time measurements calculated from dGEMRIC data ("T1(Gd) relaxation times").
Resumo:
The purpose was to investigate the in vivo effects of unloading and compression on T1-Gd relaxation times in healthy articular knee cartilage.
Resumo:
The effect of acetyl-L-carnitine (ALCAR) supplementation to 3-month-old rats in normal-loading and unloading conditions has been here investigated by a combined morphological, biochemical and transcriptional approach to test whether ALCAR might cause a remodeling of the metabolic/contractile phenotype of soleus muscle. Morphological assessment demonstrated an increase of type I oxidative fiber content and cross-sectional area in ALCAR-treated animals both in normal-loading and in unloading conditions. ALCAR prevented loss of mitochondrial mass in unloaded animals whereas no ALCAR-dependent increase of mitochondrial mass occurred in normal-loaded muscle. Validated microarray analysis delineated an ALCAR-induced maintenance of a slow-oxidative expression program only in unloaded soleus muscle. Indeed, the muscle adjustment of the expression profile of factors underlying mitochondrial oxidative metabolism, protein turnover, fiber type differentiation and an adaptation of voltage-gated ion channel expression was distinguishable with respect to the loading status. This selectivity may suggest a key role of muscle loading status in the manifestation of ALCAR effects. The results extend to a broader level of biological informations the previous notion on ALCAR positive effect in rat soleus muscle during unloading and point to a role of ALCAR for the maintenance of its slow-oxidative fiber character.
Resumo:
The use of water suppression for in vivo proton MR spectroscopy diminishes the signal intensities from resonances that undergo magnetization exchange with water, particularly those downfield of water. To investigate these exchangeable resonances, an inversion transfer experiment was performed using the metabolite cycling technique for non-water-suppressed MR spectroscopy from a large brain voxel in 11 healthy volunteers at 3.0 T. The exchange rates of the most prominent peaks downfield of water were found to range from 0.5 to 8.9 s(-1), while the T(1) relaxation times in absence of exchange were found to range from 175 to 525 ms. These findings may help toward the assignments of the downfield resonances and a better understanding of the sources of contrast in chemical exchange saturation transfer imaging.
Resumo:
T2 mapping techniques use the relaxation constant as an indirect marker of cartilage structure, and the relaxation constant has also been shown to be a sensitive parameter for cartilage evaluation. As a possible additional robust biomarker, T2* relaxation time is a potential, clinically feasible parameter for the biochemical evaluation of articular cartilage.
Resumo:
Complete genome sequences were determined for two distinct strains of slow bee paralysis virus (SBPV) of honeybees (Apis mellifera). The SBPV genome is approximately 9 5 kb long and contains a single ORF flanked by 5'- and 3'-UTRs and a naturally polyadenylated 3' tail, with a genome organization typical of members of the family Iflaviridae The two strains, labelled `Rothamsted' and 'Harpenden', are 83% identical at the nucleotide level (94% identical at the amino acid level), although this variation is distributed unevenly over the genome. The two strains were found to co-exist at different proportions in two independently propagated SBPV preparations The natural prevalence of SBPV for 847 colonies in 162 apiaries across five European countries was <2%, with positive samples found only in England and Switzerland, in colonies with variable degrees of Varroa infestation
Resumo:
The use of preparations from Bryophyllum pinnatum (Lamarck) Oken (Kalanchoe pinnata (Lamarck) Persoon) in tocolysis is supported by clinical evidence. We studied here the effect of B. pinnatum leaf press juice and its chemical fractions on the response of human myometrial strips. No data are available if the influence on myometrial strips of the juice differs from that of its components in the chemical fractions, in order to increase the pharmacological effect.