3 resultados para SERS-active substrates

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The redox chemistry and the related surface phase behavior of Safranine (SAF) and Janus Green B (JGB) have been studied by means of cyclic voltammetry in combination with in situ Scanning Tunneling Microscopy using HOPG (Highly Oriented Pyrolytic Graphite) and single crystalline Cu(1 0 0) as model substrates, both revealing different widths of the accessible potential windows. JGB and SAF serve as prototypical heterocyclic suppressor/leveler additives that are used for the metallization of 3D-TSVs (3D Through Silicon Vias) following a classical "leveling" concept. SAF can be considered as the reductive decomposition product of JGB that is formed at the copper/electrolyte interface upon electroplating. Both additives reveal a pronounced pH-dependent redox-chemistry with redox-transitions lying close to or even beyond the anodic limit of the copper potential window. Affected by these redox-processes are in particular the aromatic cores of those heterocycles that can be (quasi)reversibly reduced by a two electron transfer process within the potential window of copper. Therefore we identify the reduced form of those dyes as the active components for the suppressing/leveling effect in copper plating. STM data clearly shows a dye surface phase behavior that is crucially determined by its potential-dependent redox-chemistry. This will be exemplarily discussed for the SAF dye. On chloride-modified Cu(1 0 0) mono-reduced SAF forms a structurally well-defined monolayer of cationic stacking polymers. However, this coupled anion/cation layer reveals only minor suppressing capabilities with respect to the copper dissolution and deposition processes. Complete reduction of the aromatic heterocycle finally leads to the 3D precipitation of hydrophobic reaction products. 3D clusters of this SAF precipitate are discussed as the active structural motif for the suppressing effect of these dyes. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past, protease-substrate finding proved to be rather haphazard and was executed by in vitro cleavage assays using singly selected targets. In the present study, we report the first protease proteomic approach applied to meprin, an astacin-like metalloendopeptidase, to determine physiological substrates in a cell-based system of Madin-Darby canine kidney epithelial cells. A simple 2D IEF/SDS/PAGE-based image analysis procedure was designed to find candidate substrates in conditioned media of Madin-Darby canine kidney cells expressing meprin in zymogen or in active form. The method enabled the discovery of hitherto unknown meprin substrates with shortened (non-trypsin-generated) N- and C-terminally truncated cleavage products in peptide fragments upon LC-MS/MS analysis. Of 22 (17 nonredundant) candidate substrates identified, the proteolytic processing of vinculin, lysyl oxidase, collagen type V and annexin A1 was analysed by means of immunoblotting validation experiments. The classification of substrates into functional groups may propose new functions for meprins in the regulation of cell homeostasis and the extracellular environment, and in innate immunity, respectively.