13 resultados para SELECTOR
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A computer simulation study describing the electrophoretic separation and migration of methadone enantiomers in presence of free and immobilized (2-hydroxypropyl)-β-CD is presented. The 1:1 interaction of methadone with the neutral CD was simulated by using experimentally determined mobilities and complexation constants for the complexes in a low-pH BGE comprising phosphoric acid and KOH. The use of complex mobilities represents free solution conditions with the chiral selector being a buffer additive, whereas complex mobilities set to zero provide data that mimic migration and separation with the chiral selector being immobilized, that is CEC conditions in absence of unspecific interaction between analytes and the chiral stationary phase. Simulation data reveal that separations are quicker, electrophoretic displacement rates are reduced, and sensitivity is enhanced in CEC with on-column detection in comparison to free solution conditions. Simulation is used to study electrophoretic analyte behavior at the interface between sample and the CEC column with the chiral selector (analyte stacking) and at the rear end when analytes leave the environment with complexation (analyte destacking). The latter aspect is relevant for off-column analyte detection in CEC and is described here for the first time via the dynamics of migrating analyte zones. Simulation provides insight into means to counteract analyte dilution at the column end via use of a BGE with higher conductivity. Furthermore, the impact of EOF on analyte migration, separation, and detection for configurations with the selector zone being displaced or remaining immobilized under buffer flow is simulated. In all cases, the data reveal that detection should occur within or immediately after the selector zone.
Resumo:
Ketamine, a phencyclidine derivative, is used for induction of anesthesia, as an anesthetic drug for short term surgical interventions and in subanesthetic doses for postoperative pain relief. Ketamine undergoes extensive hepatic first-pass metabolism. Enantioselective capillary electrophoresis with multiple isomer sulfated -cyclodextrin as chiral selector was used to identify cytochrome P450 enzymes involved in hepatic ketamine and norketamine biotransformation in vitro. The N-demethylation of ketamine to norketamine and subsequently the biotransformation of norketamine to other metabolites were studied via analysis of alkaline extracts of in vitro incubations of racemic ketamine and racemic norketamine with nine recombinantly expressed human cytochrome P450 enzymes and human liver microsomes. Norketamine was formed by CYP3A4, CYP2C19, CYP2B6, CYP2A6, CYP2D6 and CYP2C9, whereas CYP2B6 and CYP2A6 were identified to be the only enzymes which enable the hydroxylation of norketamine. The latter two enzymes produced metabolic patterns similar to those found in incubations with human liver microsomes. The kinetic data of ketamine N-demethylation with CYP3A4 and CYP2B6 were best described with the Michaelis-Menten model and the Hill equation, respectively. This is the first study elucidating the individual enzymes responsible for hydroxylation of norketamine. The obtained data suggest that in vitro biotransformation of ketamine and norketamine is stereoselective.
Resumo:
A robust CE method for the simultaneous determination of the enantiomers of ketamine and norketamine in equine plasma is described. It is based upon liquid-liquid extraction of ketamine and norketamine at alkaline pH from 1 mL plasma followed by analysis of the reconstituted extract by CE in the presence of a pH 2.5 Tris-phosphate buffer containing 10 mg/mL highly sulfated beta-CD as chiral selector. Enantiomer plasma levels between 0.04 and 2.5 microg/mL are shown to provide linear calibration graphs. Intraday and interday precisions evaluated from peak area ratios (n = 5) at the lowest calibrator concentration are < 8 and < 14%, respectively. The LOD for all enantiomers is 0.01 microg/mL. After i.v. bolus administration of 2.2 mg/kg racemic ketamine, the assay is demonstrated to provide reliable data for plasma samples of ponies under isoflurane anesthesia, of ponies premedicated with xylazine, and of one horse that received romifidine, L-methadone, guaifenisine, and isoflurane. In animals not premedicated with xylazine, the ketamine N-demethylation is demonstrated to be enantioselective. The concentrations of the two ketamine enantiomers in plasma are equal whereas S-norketamine is found in a larger amount than R-norketamine. In the group receiving xylazine, data obtained do not reveal this stereoselectivity.
Resumo:
CE with multiple isomer sulfated beta-CD as the chiral selector was assessed for the simultaneous analysis of the enantiomers of ketamine and metabolites in extracts of equine plasma and urine. Different lots of the commercial chiral selector provided significant changes in enantiomeric ketamine separability, a fact that can be related to the manufacturing variability. A mixture of two lots was found to provide high-resolution separations and interference-free detection of the enantiomers of ketamine, norketamine, dehydronorketamine, and an incompletely identified hydroxylated metabolite of norketamine in liquid/liquid extracts of the two body fluids. Ketamine, norketamine, and dehydronorketamine could be unambiguously identified via HPLC fractionation of urinary extracts and using LC-MS and LC-MS/MS with 1 mmu mass discrimination. The CE assay was used to characterize the stereoselectivity of the compounds' enantiomers in the samples of five ponies anesthetized with isoflurane in oxygen and treated with intravenous continuous infusion of racemic ketamine. The concentrations of the ketamine enantiomers in plasma are equal, whereas the urinary amount of R-ketamine is larger than that of S-ketamine. Plasma and urine contain higher S- than R-norketamine levels and the mean S-/R-enantiomer ratios of dehydronorketamine in plasma and urine are lower than unity and similar.
Resumo:
Die vorliegende Kasuistik beschreibt die gefundenen Ohr-Akupunkturpunkte bei frühgeborenen bichorial triamnioten Drillingen im Alter von 31 Wochen und 2 Tagen. Die Schwangerschaft ist durch IVF entstanden und wurde wegen einer Präeklampsie per Sectio beendet. Die Drillinge wurden am 17. Lebenstag mit dem Svesa Pointselektor 1 070 auf elektrisch aktive Akupunkturpunkte am Ohr untersucht. Je schlechter der klinische Zustand des Neugeborenen, desto mehr Akupunkturpunkte konnten am Ohr gefunden werden. Die identifizierten Reflexzonen/Akupunkturpunkte am Ohr zeigen zum Teil Übereinstimmungen mit der Pathologie im Körper und dem klinischen Zustand des Neugeborenen. Der Schwerpunkt lag bei Organpunkten, was mit dem entsprechenden klinischen Zustand des Organs korrelierte. Psychische Punkte wurden nicht gefunden.
Resumo:
An assay for the simultaneous determination of the enantiomers of hydroxymebendazole (OH-MBZ) and hydroxyaminomebendazole (OH-AMBZ) together with aminomebendazole (AMBZ) in human plasma is described for the first time. It is based upon liquid-liquid extraction at alkaline pH from 0.5 mL plasma followed by analysis of the reconstituted extract by CE with reversed polarity in the presence of a 50 mM, pH 4.2 acetate buffer containing 15 mg/mL sulfated beta-CD as chiral selector. For all compounds, detection limits are between 0.01 and 0.04 microg/mL, and intraday and interday precisions evaluated from peak area ratios are <6.9 and <8.5%, respectively. Analysis of 39 samples of echinoccocosis patients undergoing pharmacotherapy with mebendazole (MBZ) revealed that the ketoreduction of MBZ and AMBZ is highly stereoselective. One enantiomer of each metabolite (firstly detected peak in both cases) could only be detected. The CE data revealed that OH-MBZ (mean: 0.715 microg/mL) is the major metabolite followed by AMBZ (mean: 0.165 microg/mL) and OH-AMBZ (mean: 0.055 microg/mL) whereas the MBZ plasma levels (mean: 0.096 microg/mL, levels determined by HPLC) were between those of AMBZ and OH-AMBZ.
Resumo:
CE with multiple isomer sulfated-CD as selector was used for the simultaneous analysis of the stereoisomers of ketamine, norketamine, 5,6-dehydronorketamine and hydroxylated metabolites of norketamine in liquid/liquid extracts of (i) in vitro incubations with ketamine or norketamine and equine liver microsomes and (ii) plasma and urine of ponies receiving a target-controlled infusion of ketamine under isoflurane anesthesia. Hydroxynorketamine metabolites with the hydroxy group at the cyclohexanone ring could be shown to be formed stereoselectively both in vitro and in vivo. Due to the lack of standard compounds, urinary extracts were fractionated by HPLC followed by characterization of the collected fractions with CE and LC-MS(n) with 0.7 mmu mass discrimination. Comparison of LC-MS(n) data obtained with the fractions, an in vitro microsomal sample, and both pony urine and hydrolyzed pony urine led to the identification of four hydroxylated norketamine metabolites with hydroxylation at the cyclohexanone ring, two with hydroxylation at the aromatic ring and four hydroxylated metabolites of ketamine. Due to the lower detection sensitivity, only the four hydroxynorketamine metabolites with hydroxylation at the cyclohexanone ring were observed by CE. The data suggest that demethylation of ketamine followed by hydroxylation of norketamine at the cyclohexanone ring is the major metabolic pathway in equine species and that the ketamine metabolism is highly stereoselective.
Resumo:
The development of electrophoretic computer models and their use for simulation of electrophoretic processes has increased significantly during the last few years. Recently, GENTRANS and SIMUL5 were extended with algorithms that describe chemical equilibria between solutes and a buffer additive in a fast 1:1 interaction process, an approach that enables simulation of the electrophoretic separation of enantiomers. For acidic cationic systems with sodium and H3 0(+) as leading and terminating components, respectively, acetic acid as counter component, charged weak bases as samples, and a neutral CD as chiral selector, the new codes were used to investigate the dynamics of isotachophoretic adjustment of enantiomers, enantiomer separation, boundaries between enantiomers and between an enantiomer and a buffer constituent of like charge, and zone stability. The impact of leader pH, selector concentration, free mobility of the weak base, mobilities of the formed complexes and complexation constants could thereby be elucidated. For selected examples with methadone enantiomers as analytes and (2-hydroxypropyl)-β-CD as selector, simulated zone patterns were found to compare well with those monitored experimentally in capillary setups with two conductivity detectors or an absorbance and a conductivity detector. Simulation represents an elegant way to provide insight into the formation of isotachophoretic boundaries and zone stability in presence of complexation equilibria in a hitherto inaccessible way.
Resumo:
Threo-methylphenidate is a chiral psychostimulant drug widely prescribed to treat attention-deficit hyperactivity disorder in children and adolescents. An enantioselective CE-based assay with head-column field-amplified sample stacking for analysis of threo-methylphenidate enantiomers in liquid/liquid extracts of oral fluid is described. Analytes are electrokinetically injected across a short water plug placed at the capillary inlet and become stacked at the interface between plug and buffer. Enantiomeric separation occurs within a few minutes in a pH 3.0 phosphate/triethanolamine buffer containing 20 mg/mL (2-hydroxypropyl)-β-CD as chiral selector. The assay with six point multilevel internal calibration provides a linear response for each enantiomer in the 10-200 ng/mL concentration range, is simple, inexpensive, and reproducible, and has an LOQ of 5 ng/mL. It was applied to oral fluid patient samples that were collected up to 12 h after intake of an immediate release tablet and two different extended release formulations with racemic methylphenidate. Drug profiles could thereby be assessed in a stereoselective way. Almost no levorotary threo-methylphenidate enantiomer was detected after intake of the two extended release formulations, whereas this enantiomer was detected during the first 2.5 h after intake of the immediate release preparation. The noninvasive collection of oral fluid is an attractive alternative to plasma for the monitoring of methylphenidate exposure in the pediatric community.
Resumo:
GENTRANS, a comprehensive one-dimensional dynamic simulator for electrophoretic separations and transport, was extended for handling electrokinetic chiral separations with a neutral ligand. The code can be employed to study the 1:1 interaction of monovalent weak and strong acids and bases with a single monovalent weak or strong acid or base additive, including a neutral cyclodextrin, under real experimental conditions. It is a tool to investigate the dynamics of chiral separations and to provide insight into the buffer systems used in chiral capillary zone electrophoresis (CZE) and chiral isotachophoresis. Analyte stacking across conductivity and buffer additive gradients, changes of additive concentration, buffer component concentration, pH, and conductivity across migrating sample zones and peaks, and the formation and migration of system peaks can thereby be investigated in a hitherto inaccessible way. For model systems with charged weak bases and neutral modified β-cyclodextrins at acidic pH, for which complexation constants, ionic mobilities, and mobilities of selector-analyte complexes have been determined by CZE, simulated and experimentally determined electropherograms and isotachopherograms are shown to be in good agreement. Simulation data reveal that CZE separations of cationic enantiomers performed in phosphate buffers at low pH occur behind a fast cationic migrating system peak that has a small impact on the buffer composition under which enantiomeric separation takes place.
Resumo:
One-dimensional dynamic computer simulation was employed to investigate the separation and migration order change of ketoconazole enantiomers at low pH in presence of increasing amounts of (2-hydroxypropyl)-β-cyclodextrin (OHP-β-CD). The 1:1 interaction of ketoconazole with the neutral cyclodextrin was simulated under real experimental conditions and by varying input parameters for complex mobilities and complexation constants. Simulation results obtained with experimentally determined apparent ionic mobilities, complex mobilities, and complexation constants were found to compare well with the calculated separation selectivity and experimental data. Simulation data revealed that the migration order of the ketoconazole enantiomers at low (OHP-β-CD) concentrations (i.e. below migration order inversion) is essentially determined by the difference in complexation constants and at high (OHP-β-CD) concentrations (i.e. above migration order inversion) by the difference in complex mobilities. Furthermore, simulations with complex mobilities set to zero provided data that mimic migration order and separation with the chiral selector being immobilized. For the studied CEC configuration, no migration order inversion is predicted and separations are shown to be quicker and electrophoretic transport reduced in comparison to migration in free solution. The presented data illustrate that dynamic computer simulation is a valuable tool to study electrokinetic migration and separations of enantiomers in presence of a complexing agent.
Resumo:
Pharmacokinetic and pharmacodynamic properties of a chiral drug can significantly differ between application of the racemate and single enantiomers. During drug development, the characteristics of candidate compounds have to be assessed prior to clinical testing. Since biotransformation significantly influences drug actions in an organism, metabolism studies represent a crucial part of such tests. Hence, an optimized and economical capillary electrophoretic method for on-line studies of the enantioselective drug metabolism mediated by cytochrome P450 enzymes was developed. It comprises a diffusion-based procedure, which enables mixing of the enzyme with virtually any compound inside the nanoliter-scale capillary reactor and without the need of additional optimization of mixing conditions. For CYP3A4, ketamine as probe substrate and highly sulfated γ-cyclodextrin as chiral selector, improved separation conditions for ketamine and norketamine enantiomers compared to a previously published electrophoretically mediated microanalysis method were elucidated. The new approach was thoroughly validated for the CYP3A4-mediated N-demethylation pathway of ketamine and applied to the determination of its kinetic parameters and the inhibition characteristics in presence of ketoconazole and dexmedetomidine. The determined parameters were found to be comparable to literature data obtained with different techniques. The presented method constitutes a miniaturized and cost-effective tool, which should be suitable for the assessment of the stereoselective aspects of kinetic and inhibition studies of cytochrome P450-mediated metabolic steps within early stages of the development of a new drug.
Resumo:
Cytochrome P450 (CYP) enzymes catalyze the metabolism of both, the analgesic and anesthetic drug ketamine and the α2 -adrenergic receptor-agonist medetomidine that is used for sedation and analgesia. As racemic medetomidine or its active enantiomer dexmedetomidine are often coadministered with racemic or S-ketamine in animals and dexmedetomidine together with S- or racemic ketamine in humans, drug-drug interactions are likely to occur and have to be characterized. Enantioselective CE with highly sulfated γ-cyclodextrin as chiral selector was employed for analyzing in vitro (i) the kinetics of the N-demethylation of ketamine mediated by canine CYP3A12 and (ii) interactions occurring with racemic medetomidine and dexmedetomidine during coincubation with ketamine and canine liver microsomes (CLM), canine CYP3A12, human liver microsomes (HLM), and human CYP3A4. For CYP3A12 without an inhibitor, Michaelis-Menten kinetics was determined for the single enantiomers of ketamine and substrate inhibition kinetics for racemic ketamine. Racemic medetomidine and dexmedetomidine showed an inhibition of the N-demethylation reaction in the studied canine enzyme systems. Racemic medetomidine is the stronger inhibitor for CLM, whereas there is no difference for CYP3A12. For CLM and CYP3A12, the inhibition of dexmedetomidine is stronger for the R- compared to the S-enantiomer of ketamine, a stereoselectivity that is not observed for CYP3A4. Induction is observed at a low dexmedetomidine concentration with CYP3A4 but not with CYP3A12, CLM, and HLM. Based on these results, S-ketamine combined with dexmedetomidine should be the best option for canines. The enantioselective CE assay with highly sulfated γ-cyclodextrin as chiral selector is an effective tool for determining kinetic and inhibition parameters of metabolic pathways.