4 resultados para SEA SEDIMENTS

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This multiproxy study on SE Black Sea sediments provides the first detailed reconstruction of vegetation and environmental history of Northern Anatolia between 134 and 119 ka. Here, the glacial–interglacial transition is characterized by several short-lived alternating cold and warm events preceding a meltwater pulse (~ 130.4–131.7 ka). The latter is reconstructed as a cold arid period correlated to Heinrich event 11. The initial warming is evidenced at ~ 130.4 ka by increased primary productivity in the Black Sea, disappearance of ice-rafted detritus, and spreading of oaks in Anatolia. A Younger Dryas-type event is not identifiable. The Eemian vegetation succession corresponds to the main climatic phases in Europe: i) the Quercus–Juniperus phase (128.7–126.4 ka) indicates a dry continental climate; ii) the Ostrya–Corylus–Quercus–Carpinus phase (126.4–122.9 ka) suggests warm summers, mild winters, and high year-round precipitation; iii) the Fagus–Carpinus phase (122.9–119.5 ka) indicates cooling and high precipitation; and iv) increasing Pinus at ~ 121 ka marks the onset of cooler/drier conditions. Generally, pollen reconstructions suggest altitudinal/latitudinal migrations of vegetation belts in Northern Anatolia during the Eemian caused by increased transport of moisture. The evidence for the wide distribution of Fagus around the Black Sea contrasts with the European records and is likely related to climatic and genetic factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have retrieved radiogenic hafnium (Hf) isotope compositions (ɛHf) from authigenic Fe–Mn oxyhydroxides of deep northwest Atlantic sediments deposited over the past 26 ka to investigate the oceanic evidence of changes in dissolved weathering inputs from NE America during the last deglaciation. The extraction of seawater-derived Hf isotopic compositions from Fe–Mn oxyhydroxides is not a standard procedure. Comparisons between the Al/Hf ratios and Hf isotopic compositions of the chemically extracted authigenic phase on the one hand, and those of the corresponding detrital fractions on the other, provide evidence that the composition of past seawater has been reliably obtained for most sampled depths with our leaching procedures. This is endorsed most strongly by data for a sediment core from 4250 m water depth at the deeper Blake Ridge, for which consistent replicates were produced throughout. The Hf isotopic composition of the most recent sample in this core also closely matches that of nearby present day central North Atlantic seawater. Comparison with previously published seawater Nd and Pb isotope compositions obtained on the same cores shows that both Hf and Pb were released incongruently during incipient chemical weathering, but responded differently to the deglacial retreat of the Laurentide Ice Sheet. Hafnium was released more congruently during peak glacial conditions of the Last Glacial Maximum (LGM) and changed to typical incongruent interglacial ɛHf signatures either during or shortly after the LGM. This indicates that some zircon-derived Hf was released to seawater during the LGM. Conversely, there is no clear evidence for an increase in the influence of weathering of Lu-rich mineral phases during deglaciation, possibly since relatively unradiogenic Hf contributions from feldspar weathering were superimposed. While the authigenic Pb isotope signal in the same marine sediment samples traced peak chemical weathering rates on continental North America during the transition to the Holocene a similar incongruent excursion is notably absent in the Hf isotope record. The early change towards more radiogenic ɛHf in relation to the LGM may provide direct evidence for the transition from a cold-based to a warm-based Laurentide Ice Sheet on the Atlantic sector of North America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The burial of organic carbon in marine sediments removes carbon dioxide from the ocean–atmosphere pool, provides energy to the deep biosphere, and on geological timescales drives the oxygenation of the atmosphere. Here we quantify natural variations in the burial of organic carbon in deep-sea sediments over the last glacial cycle. Using a new data compilation of hundreds of sediment cores, we show that the accumulation rate of organic carbon in the deep sea was consistently higher (50%) during glacial maxima than during interglacials. The spatial pattern and temporal progression of the changes suggest that enhanced nutrient supply to parts of the surface ocean contributed to the glacial burial pulses, with likely additional contributions from more efficient transfer of organic matter to the deep sea and better preservation of organic matter due to reduced oxygen exposure. These results demonstrate a pronounced climate sensitivity for this global carbon cycle sink.