3 resultados para SCHOTTKY PHOTODIODES
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This paper presents the first analysis of the input impedance and radiation properties of a dipole antenna, placed on top of Fan 's three-dimensional electromagnetic bandgap (EBG) structure, (Applied Physics Letters, 1994) constructed using a high dielectric constant ceramic. The best position of the dipole on the EBG surface is determined following impedance and radiation pattern analyses. Based on this optimum configuration an integrated Schottky heterodyne detector was designed, manufactured and tested from 0.48 to 0.52 THz. The main antenna features were not degraded by the high dielectric constant substrate due to the use of the EBG approach. Measured radiation patterns are in good agreement with the predicted ones.
Resumo:
A detector based on doped silica and optical fibers was developed to monitor the profile of particle accelerator beams of intensity ranging from 1 pA to tens of µA. Scintillation light produced in a fiber moving across the beam is measured, giving information on its position, shape and intensity. The detector was tested with a continuous proton beam at the 18 MeV Bern medical cyclotron used for radioisotope production and multi-disciplinary research. For currents from 1 pA to 20 µA, Ce3+ and Sb3+ doped silica fibers were used as sensors. Read out systems based on photodiodes, photomultipliers and solid state photomultipliers were employed. Profiles down to the pA range were measured with this method for the first time. For currents ranging from 1 pA to 3 µA, the integral of the profile was found to be linear with respect to the beam current, which can be measured by this detector with an accuracy of ∼1%. The profile was determined with a spatial resolution of 0.25 mm. For currents ranging from 5 µA to 20 µA, thermal effects affect light yield and transmission, causing distortions of the profile and limitations in monitoring capabilities. For currents higher than ∼1 µA, non doped optical fibers for both producing and transporting scintillation light were also successfully employed.