2 resultados para SBR
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We estimate the underpricing and long-run performance of Swiss initial public offerings (IPOs) from 1983 to 2000. The average market adjusted initial return is 34.97%. To examine the long-run performance of Swiss IPOs, we compute buy-and-hold abnormal returns, skewness-adjusted wealth ratios, and cumulative abnormal returns using 120 months of secondary market returns. In contrast to previous findings for the U.S. and Germany, we do not find strong evidence for a distinct IPO effect. We attribute long-run underperformance to the fact that IPO firms tend to be small firms. It virtually vanishes when we use a small capitalization index as a benchmark. In spite of distinct economic implications and statistical properties, our basic results are similar for all performance measures applied.
Resumo:
Long-term electrocardiogram (ECG) often suffers from relevant noise. Baseline wander in particular is pronounced in ECG recordings using dry or esophageal electrodes, which are dedicated for prolonged registration. While analog high-pass filters introduce phase distortions, reliable offline filtering of the baseline wander implies a computational burden that has to be put in relation to the increase in signal-to-baseline ratio (SBR). Here we present a graphics processor unit (GPU) based parallelization method to speed up offline baseline wander filter algorithms, namely the wavelet, finite, and infinite impulse response, moving mean, and moving median filter. Individual filter parameters were optimized with respect to the SBR increase based on ECGs from the Physionet database superimposed to auto-regressive modeled, real baseline wander. A Monte-Carlo simulation showed that for low input SBR the moving median filter outperforms any other method but negatively affects ECG wave detection. In contrast, the infinite impulse response filter is preferred in case of high input SBR. However, the parallelized wavelet filter is processed 500 and 4 times faster than these two algorithms on the GPU, respectively, and offers superior baseline wander suppression in low SBR situations. Using a signal segment of 64 mega samples that is filtered as entire unit, wavelet filtering of a 7-day high-resolution ECG is computed within less than 3 seconds. Taking the high filtering speed into account, the GPU wavelet filter is the most efficient method to remove baseline wander present in long-term ECGs, with which computational burden can be strongly reduced.