6 resultados para SALMONELLOSIS

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A die-off of passerine birds, mostly Eurasian siskins (Carduelis spinus), occurred in multiple areas of Switzerland between February and March 2010. Several of the dead birds were submitted for full necropsy. Bacteriological examination was carried out on multiple tissues of each bird. At gross examination, common findings were light-tan nodules, 1 to 4 mm in diameter, scattered through the esophagus/crop. Histologically, a necroulcerative transmural esophagitis/ingluvitis was observed. Bacterial cultures yielded Salmonella enterica subsp. enterica serovar Typhimurium. At the same time, 2 pet clinics reported an unusual increase of domestic cats presented with fever, anorexia, occasionally dolent abdomen, and history of presumed consumption of passerine birds. Analysis of rectal swabs revealed the presence of S. Typhimurium in all tested cats. PFGE (pulsed field electrophoresis) analysis was performed to characterize and compare the bacterial isolates, and it revealed an indistinguishable pattern between all the avian and all but 1 of the feline isolates. Cloacal swabs collected from clinically healthy migrating Eurasian siskins (during autumn 2010) did not yield S. Typhimurium. The histological and bacteriological findings were consistent with a systemic infection caused by S. Typhimurium. Isolation of the same serovar from the dead birds and ill cats, along with the overlapping results of the PFGE analysis for all the animal species, confirmed a spillover from birds to cats through predation. The sudden increase of the number of siskins over the Swiss territory and their persistency during the whole winter of 2009-2010 is considered the most likely predisposing factor for the onset of the epidemic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salmonella enterica serovar Typhimurium has long been recognised as a zoonotic pathogen of economic significance in animals and humans. Attempts to protect humans and livestock may be based on immunization with vaccines aimed to induce a protective response. We recently demonstrated that the oral administration of a Salmonella enterica serovar Typhimurium strain unable to synthesize the zinc transporter ZnuABC is able to protect mice against systemic salmonellosis induced by a virulent homologous challenge. This finding suggested that this mutant strain could represent an interesting candidate vaccine for mucosal delivery. In this study, the protective effect of this Salmonella strain was tested in a streptomycin-pretreated mouse model of salmonellosis that is distinguished by the capability of evoking typhlitis and colitis. The here reported results demonstrate that mice immunized with Salmonella enterica serovar Typhimurium (S. Typhimurium) SA186 survive to the intestinal challenge and, compared to control mice, show a reduced number of virulent bacteria in the gut, with milder signs of inflammation. This study demonstrates that the oral administration a of S. Typhimurium strain lacking ZnuABC is able to elicit an effective immune response which protects mice against intestinal S. Typhimurium infection. These results, collectively, suggest that the streptomycin-pretreated mouse model of S. typhimurium infection can represent a valuable tool to screen S. typhimurium attenuated mutant strains and potentially help to assess their protective efficacy as potential live vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report describes the clinical features, diagnosis and treatment of a dog with unilateral epididymitis associated with Salmonella spp. bacteremia. Fever and an enlarged and painful testicle were the main clinical signs that resulted in referral for diagnostic evaluation. Unilateral septic epididymitis was diagnosed via ultrasonography of the genitourinary tract and aerobic culture of scrotal fluid, urine and blood, which yielded heavy growth of Salmonella spp. Pulsed-field gel electrophoresis (PFGE) confirmed the presence of Salmonella javiana. Following antibiotic therapy there was total resolution of clinical signs, and no Salmonella was isolated from a post-treatment urine culture. The source of infection was unknown, however an environmental exposure was suspected. Although infrequent, infection with Salmonella spp. should be included in the differential diagnosis of canine epididymitis. Given the major zoonotic importance of salmonellosis, and to prevent re-infection after treatment, the source of the infection should be investigated and eliminated, if possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salmonella enterica subspecies 1 serovar Typhimurium is a common cause of gastrointestinal infections. The host's innate immune system and a complex set of Salmonella virulence factors are thought to contribute to enteric disease. The serovar Typhimurium virulence factors have been studied extensively by using tissue culture assays, and bovine infection models have been used to verify the role of these factors in enterocolitis. Streptomycin-pretreated mice provide an alternative animal model to study enteric salmonellosis. In this model, the Salmonella pathogenicity island 1 type III secretion system has a key virulence function. Nothing is known about the role of other virulence factors. We investigated the role of flagella in murine serovar Typhimurium colitis. A nonflagellated serovar Typhimurium mutant (fliGHI) efficiently colonized the intestine but caused little colitis during the early phase of infection (10 and 24 h postinfection). In competition assays with differentially labeled strains, the fliGHI mutant had a reduced capacity to get near the intestinal epithelium, as determined by fluorescence microscopy. A flagellated but nonchemotactic cheY mutant had the same virulence defects as the fliGHI mutant for causing colitis. In competitive infections, both mutants colonized the intestine of streptomycin-pretreated mice by day 1 postinfection but were outcompeted by the wild-type strain by day 3 postinfection. Together, these data demonstrate that flagella are required for efficient colonization and induction of colitis in streptomycin-pretreated mice. This effect is mostly attributable to chemotaxis. Recognition of flagellar subunits (i.e., flagellin) by innate immune receptors (i.e., Toll-like receptor 5) may be less important.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salmonella enterica subspecies 1 serovar Typhimurium (serovar Typhimurium) induces enterocolitis in humans and cattle. The mechanisms of enteric salmonellosis have been studied most extensively in calf infection models. The previous studies established that effector protein translocation into host cells via the Salmonella pathogenicity island 1 (SPI-1) type III secretion system (TTSS) is of central importance in serovar Typhimurium enterocolitis. We recently found that orally streptomycin-pretreated mice provide an alternative model for serovar Typhimurium colitis. In this model the SPI-1 TTSS also plays a key role in the elicitation of intestinal inflammation. However, whether intestinal inflammation in calves and intestinal inflammation in streptomycin-pretreated mice are induced by the same SPI-1 effector proteins is still unclear. Therefore, we analyzed the role of the SPI-1 effector proteins SopB/SigD, SopE, SopE2, and SipA/SspA in elicitation of intestinal inflammation in the murine model. We found that sipA, sopE, and, to a lesser degree, sopE2 contribute to murine colitis, but we could not assign an inflammation phenotype to sopB. These findings are in line with previous studies performed with orally infected calves. Extending these observations, we demonstrated that in addition to SipA, SopE and SopE2 can induce intestinal inflammation independent of each other and in the absence of SopB. In conclusion, our data corroborate the finding that streptomycin-pretreated mice provide a useful model for studying the molecular mechanisms of serovar Typhimurium colitis and are an important starting point for analysis of the molecular events triggered by SopE, SopE2, and SipA in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salmonella enterica subspecies 1 serovar Typhimurium is a principal cause of human enterocolitis. For unknown reasons, in mice serovar Typhimurium does not provoke intestinal inflammation but rather targets the gut-associated lymphatic tissues and causes a systemic typhoid-like infection. The lack of a suitable murine model has limited the analysis of the pathogenetic mechanisms of intestinal salmonellosis. We describe here how streptomycin-pretreated mice provide a mouse model for serovar Typhimurium colitis. Serovar Typhimurium colitis in streptomycin-pretreated mice resembles many aspects of the human infection, including epithelial ulceration, edema, induction of intercellular adhesion molecule 1, and massive infiltration of PMN/CD18(+) cells. This pathology is strongly dependent on protein translocation via the serovar Typhimurium SPI1 type III secretion system. Using a lymphotoxin beta-receptor knockout mouse strain that lacks all lymph nodes and organized gut-associated lymphatic tissues, we demonstrate that Peyer's patches and mesenteric lymph nodes are dispensable for the initiation of murine serovar Typhimurium colitis. Our results demonstrate that streptomycin-pretreated mice offer a unique infection model that allows for the first time to use mutants of both the pathogen and the host to study the molecular mechanisms of enteric salmonellosis.