18 resultados para S.P.B. Kommercheskoe uchilishche.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We undertook a meta-analysis of six Crohn's disease genome-wide association studies (GWAS) comprising 6,333 affected individuals (cases) and 15,056 controls and followed up the top association signals in 15,694 cases, 14,026 controls and 414 parent-offspring trios. We identified 30 new susceptibility loci meeting genome-wide significance (P < 5 × 10 ? ? ). A series of in silico analyses highlighted particular genes within these loci and, together with manual curation, implicated functionally interesting candidate genes including SMAD3, ERAP2, IL10, IL2RA, TYK2, FUT2, DNMT3A, DENND1B, BACH2 and TAGAP. Combined with previously confirmed loci, these results identify 71 distinct loci with genome-wide significant evidence for association with Crohn's disease.
Resumo:
Ice core evidence indicates that even though atmospheric CO2 concentrations did not exceed ~300 ppm at any point during the last 800 000 years, East Antarctica was at least ~3–4 °C warmer than preindustrial (CO2~280 ppm) in each of the last four interglacials. During the previous three interglacials, this anomalous warming was short lived (~3000 years) and apparently occurred before the completion of Northern Hemisphere deglaciation. Hereafter, we refer to these periods as "Warmer than Present Transients" (WPTs). We present a series of experiments to investigate the impact of deglacial meltwater on the Atlantic Meridional Overturning Circulation (AMOC) and Antarctic temperature. It is well known that a slowed AMOC would increase southern sea surface temperature (SST) through the bipolar seesaw and observational data suggests that the AMOC remained weak throughout the terminations preceding WPTs, strengthening rapidly at a time which coincides closely with peak Antarctic temperature. We present two 800 kyr transient simulations using the Intermediate Complexity model GENIE-1 which demonstrate that meltwater forcing generates transient southern warming that is consistent with the timing of WPTs, but is not sufficient (in this single parameterisation) to reproduce the magnitude of observed warmth. In order to investigate model and boundary condition uncertainty, we present three ensembles of transient GENIE-1 simulations across Termination II (135 000 to 124 000 BP) and three snapshot HadCM3 simulations at 130 000 BP. Only with consideration of the possible feedback of West Antarctic Ice Sheet (WAIS) retreat does it become possible to simulate the magnitude of observed warming.
Resumo:
More than 1,000 susceptibility loci have been identified through genome-wide association studies (GWAS) of common variants; however, the specific genes and full allelic spectrum of causal variants underlying these findings have not yet been defined. Here we used pooled next-generation sequencing to study 56 genes from regions associated with Crohn's disease in 350 cases and 350 controls. Through follow-up genotyping of 70 rare and low-frequency protein-altering variants in nine independent case-control series (16,054 Crohn's disease cases, 12,153 ulcerative colitis cases and 17,575 healthy controls), we identified four additional independent risk factors in NOD2, two additional protective variants in IL23R, a highly significant association with a protective splice variant in CARD9 (P < 1 × 10(-16), odds ratio ≈ 0.29) and additional associations with coding variants in IL18RAP, CUL2, C1orf106, PTPN22 and MUC19. We extend the results of successful GWAS by identifying new, rare and probably functional variants that could aid functional experiments and predictive models.
Resumo:
Pollinating insects form a key component of European biodiversity, and provide a vital ecosystem service to crops and wild plants. There is growing evidence of declines in both wild and domesticated pollinators, and parallel declines in plants relying upon them. The STEP project (Status and Trends of European Pollinators, 2010-2015, www.step-project.net) is documenting critical elements in the nature and extent of these declines, examining key functional traits associated with pollination deficits, and developing a Red List for some European pollinator groups. Together these activities are laying the groundwork for future pollinator monitoring programmes. STEP is also assessing the relative importance of potential drivers of pollinator declines, including climate change, habitat loss and fragmentation, agrochemicals, pathogens, alien species, light pollution, and their interactions. We are measuring the ecological and economic impacts of declining pollinator services and floral resources, including effects on wild plant populations, crop production and human nutrition. STEP is reviewing existing and potential mitigation options, and providing novel tests of their effectiveness across Europe. Our work is building upon existing and newly developed datasets and models, complemented by spatially-replicated campaigns of field research to fill gaps in current knowledge. Findings are being integrated into a policy-relevant framework to create evidence-based decision support tools. STEP is establishing communication links to a wide range of stakeholders across Europe and beyond, including policy makers, beekeepers, farmers, academics and the general public. Taken together, the STEP research programme aims to improve our understanding of the nature, causes, consequences and potential mitigation of declines in pollination services at local, national, continental and global scales.
Resumo:
Exacerbation of cerebrospinal fluid (CSF) inflammation in response to bacteriolysis by beta-lactam antibiotics contributes to brain damage and neurological sequelae in bacterial meningitis. Daptomycin, a nonlytic antibiotic acting on Gram-positive bacteria, lessens inflammation and brain injury compared to ceftriaxone. With a view to a clinical application for pediatric bacterial meningitis, we investigated the effect of combining daptomycin or rifampin with ceftriaxone in an infant rat pneumococcal meningitis model. Eleven-day-old Wistar rats with pneumococcal meningitis were randomized to treatment starting at 18 h after infection with (i) ceftriaxone (100 mg/kg of body weight, subcutaneously [s.c.], twice a day [b.i.d.]), (ii) daptomycin (10 mg/kg, s.c., daily) followed 15 min later by ceftriaxone, or (iii) rifampin (20 mg/kg, intraperitoneally [i.p.], b.i.d.) followed 15 min later by ceftriaxone. CSF was sampled at 6 and 22 h after the initiation of therapy and was assessed for concentrations of defined chemokines and cytokines. Brain damage was quantified by histomorphometry at 40 h after infection and hearing loss was assessed at 3 weeks after infection. Daptomycin plus ceftriaxone versus ceftriaxone significantly (P < 0.04) lowered CSF concentrations of monocyte chemoattractant protein 1 (MCP-1), MIP-1α, and interleukin 6 (IL-6) at 6 h and MIP-1α, IL-6, and IL-10 at 22 h after initiation of therapy, led to significantly (P < 0.01) less apoptosis, and significantly (P < 0.01) improved hearing capacity. While rifampin plus ceftriaxone versus ceftriaxone also led to lower CSF inflammation (P < 0.02 for IL-6 at 6 h), it had no significant effect on apoptosis and hearing capacity. Adjuvant daptomycin could therefore offer added benefits for the treatment of pediatric pneumococcal meningitis.
Resumo:
WHAT IS KNOWN AND OBJECTIVES: A problem that often affects antihypertensive drugs is the lack of formulations appropriate for childhood. Parents, therefore, crush tablets and administer the antihypertensive drug mixed with solid food or a palatable drink. Because palatability is a major modulator of adherence to prescribed medication, the palatability of crushed ß-blockers, converting enzyme inhibitors and thiazides was assessed among adult volunteers.
Resumo:
AIMS: We sought to determine whether fasting or post-challenge glucose were associated with progression of coronary atherosclerosis in non-diabetic women. METHODS: We performed a post-hoc analysis of 132 non-diabetic women who underwent 75-g oral glucose tolerance testing. The primary outcome of interest was progression of atherosclerosis determined by baseline and follow-up coronary angiography, a mean of 3.1 +/- 0.9 years apart. We analysed the association of change in minimal vessel diameter (DeltaMD) by quartile of fasting and post-challenge glucose using mixed models that included adjustment for age, systolic blood pressure, total : high-density lipoprotein cholesterol ratio, current smoking, lipid-lowering and anti-hypertensive medication use and other covariates. RESULTS: At baseline, participants had a mean age of 65.7 +/- 6.7 years and a mean body mass index of 27.9 +/- 8.5 kg/m(2). Although there were no significant differences in atherosclerotic progression by fasting glucose category (P for trend across quartiles = 0.99), there was a significant inverse association between post-challenge glucose and DeltaMD (in mm) (Q1 : 0.01 +/- 0.03; Q2 : 0.08 +/- 0.03; Q3 : 0.13 +/- 0.03; Q4 : 0.11 +/- 0.03; P for trend = 0.02). CONCLUSIONS: In post-menopausal women without diabetes, post-challenge glucose predicts angiographic disease progression. These findings suggest that even modest post-challenge hyperglycaemia influences the pathogenesis of atherosclerotic progression.
Resumo:
Early impaired cerebral blood flow (CBF) after severe head injury (SHI) leads to poor brain tissue oxygen delivery and lactate accumulation. The purpose of this investigation was to elucidate the relationship between CBF, local dialysate lactate (lact(md)) and dialysate glucose (gluc(md)), and brain tissue oxygen levels (PtiO2) under arterial normoxia. The effect of increased brain tissue oxygenation due to high fractions of inspired oxygen (FiO2) on lact(md) and CBF was explored. A total of 47 patients with SHI were enrolled in this studies (Glasgow Coma Score [GCS] < 8). CBF was first assessed in 40 patients at one time point in the first 96 hours (27 +/- 28 hours) after SHI using stable xenon computed tomography (Xe-CT) (30% inspired xenon [FiXe] and 35% FiO2). In a second study, sequential double CBF measurements were performed in 7 patients with 35% FiO2 and 60% FiO2, respectively, with an interval of 30 minutes. In a subsequent study, 14 patients underwent normobaric hyperoxia by increasing FiO2 from 35 +/- 5% to 60% and then 100% over a period of 6 hours. This was done to test the effect of normobaric hyperoxia on lact(md) and brain gluc(md), as measured by local microdialysis. Changes in PtiO2 in response to changes in FiO2 were analyzed by calculating the oxygen reactivity. Oxygen reactivity was then related to the 3-month outcome data. The levels of lact(md) and gluc(md) under hyperoxia were compared with the baseline levels, measured at 35% FiO2. Under normoxic conditions, there was a significant correlation between CBF and PtiO2 (R = 0.7; P < .001). In the sequential double CBF study, however, FiO2 was inversely correlated with CBF (P < .05). In the 14 patients undergoing the 6-hour 100% FiO2 challenge, the mean PtiO2 levels increased to 353 (87% compared with baseline), although the mean lact(md) levels decreased by 38 +/- 16% (P < .05). The PtiO2 response to 100% FiO2 (oxygen reactivity) was inversely correlated with outcome (P < .01). Monitoring PtiO2 after SHI provides valuable information about cerebral oxygenation and substrate delivery. Increasing arterial oxygen tension (PaO2) effectively increased PtiO2, and brain lact(md) was reduced by the same maneuver.
Resumo:
Many diseases are linked with uveitis, but few studies have specifically looked at the noninfectious triggers of childhood uveitis in Central Europe. The charts of 70 paediatric patients with non-infectious uveitis admitted to the Department of Pediatrics, University of Bern, Switzerland, between 1983 and 1998 were therefore reviewed. In the patients the age at presentation with uveitis ranged between 0.3 and 16 y, median 8.5 y. Based on the localization, uveitis anterior was diagnosed in most cases (n = 40; 57%), followed by panuveitis (n = 20; 29%) and uveitis posterior (n = 10; 14%). Uveitis was chronic in 54 (77%) and acute in 16 (23%), bilateral in 38 (54%) and unilateral in 32 (46%) cases. An associated condition was noted in 32 (46%) cases: juvenile idiopathic arthritis in 24 cases, sarcoidosis and juvenile spondyloarthropathy in 3 cases, and Sjögren's syndrome and Behçet's disease in 1 case each. In the remaining 38 (54%) patients, no associated condition was diagnosed. It is concluded that in Swiss children, uveitis can be due to a wide spectrum of non-infectious diseases, juvenile idiopathic arthritis being the leading cause. In the majority of the children, no associated condition was recognized.
Resumo:
PURPOSE: The characteristic findings in accidental head injury consist of linear skull fracture, epidural haematoma, localized subdural haematoma, or cortical contusion because of a linear or translational impact force. Retinal haemorrhages have been found, although uncommon, in accidental head trauma. METHODS: We performed a retrospective study of 24 consecutive cases of children with severe head injuries caused by falls. Inclusion criteria were skull fractures and/or intracranial haemorrhages documented by computerized tomography. All patients underwent a careful ophthalmic examination including dilated indirect fundoscopy within the first 48 h following admission. RESULTS: No retinal haemorrhages could be found in patients whose accidents were plausible and physical and imaging findings were compatible with reported histories. Excessive bilateral retinal haemorrhages were found in only three children with the typical signs of shaken baby syndrome. In eight children, trauma had led to orbital roof fractures. CONCLUSIONS: Retinal haemorrhages were not found in any of the patients with accidental trauma despite the severity of their head injuries. Hence, we add more evidence that there are strong differences between the ocular involvement in accidental translational trauma and those in victims of non-accidental trauma. Fall-related injuries carry a very low risk of retinal haemorrhages.
Resumo:
Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.
Resumo:
The responses of carbon dioxide (CO2) and other climate variables to an emission pulse of CO2 into the atmosphere are often used to compute the Global Warming Potential (GWP) and Global Temperature change Potential (GTP), to characterize the response timescales of Earth System models, and to build reduced-form models. In this carbon cycle-climate model intercomparison project, which spans the full model hierarchy, we quantify responses to emission pulses of different magnitudes injected under different conditions. The CO2 response shows the known rapid decline in the first few decades followed by a millennium-scale tail. For a 100 Gt-C emission pulse added to a constant CO2 concentration of 389 ppm, 25 ± 9% is still found in the atmosphere after 1000 yr; the ocean has absorbed 59 ± 12% and the land the remainder (16 ± 14%). The response in global mean surface air temperature is an increase by 0.20 ± 0.12 °C within the first twenty years; thereafter and until year 1000, temperature decreases only slightly, whereas ocean heat content and sea level continue to rise. Our best estimate for the Absolute Global Warming Potential, given by the time-integrated response in CO2 at year 100 multiplied by its radiative efficiency, is 92.5 × 10−15 yr W m−2 per kg-CO2. This value very likely (5 to 95% confidence) lies within the range of (68 to 117) × 10−15 yr W m−2 per kg-CO2. Estimates for time-integrated response in CO2 published in the IPCC First, Second, and Fourth Assessment and our multi-model best estimate all agree within 15% during the first 100 yr. The integrated CO2 response, normalized by the pulse size, is lower for pre-industrial conditions, compared to present day, and lower for smaller pulses than larger pulses. In contrast, the response in temperature, sea level and ocean heat content is less sensitive to these choices. Although, choices in pulse size, background concentration, and model lead to uncertainties, the most important and subjective choice to determine AGWP of CO2 and GWP is the time horizon.
Resumo:
BACKGROUND: Clinical disorders often share common symptoms and aetiological factors. Bifactor models acknowledge the role of an underlying general distress component and more specific sub-domains of psychopathology which specify the unique components of disorders over and above a general factor. METHODS: A bifactor model jointly calibrated data on subjective distress from The Mood and Feelings Questionnaire and the Revised Children's Manifest Anxiety Scale. The bifactor model encompassed a general distress factor, and specific factors for (a) hopelessness-suicidal ideation, (b) generalised worrying and (c) restlessness-fatigue at age 14 which were related to lifetime clinical diagnoses established by interviews at ages 14 (concurrent validity) and current diagnoses at 17 years (predictive validity) in a British population sample of 1159 adolescents. RESULTS: Diagnostic interviews confirmed the validity of a symptom-level bifactor model. The underlying general distress factor was a powerful but non-specific predictor of affective, anxiety and behaviour disorders. The specific factors for hopelessness-suicidal ideation and generalised worrying contributed to predictive specificity. Hopelessness-suicidal ideation predicted concurrent and future affective disorder; generalised worrying predicted concurrent and future anxiety, specifically concurrent generalised anxiety disorders. Generalised worrying was negatively associated with behaviour disorders. LIMITATIONS: The analyses of gender differences and the prediction of specific disorders was limited due to a low frequency of disorders other than depression. CONCLUSIONS: The bifactor model was able to differentiate concurrent and predict future clinical diagnoses. This can inform the development of targeted as well as non-specific interventions for prevention and treatment of different disorders.