14 resultados para Ropa interior

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. Permittivity measurements on porous samples of volcanic origin have been performed in the 0.05-190 GHz range under laboratory conditions in support of the Rosetta mission to comet 67P/Churyumov-Gerasimenko, specifically with the MIRO radiometric experiment and CONSERT radar experiment. Methods. The samples were split into several subsamples with different size ranges covering a few mu m to 500 mu m. Bulk densities of the subsamples were estimated to be in the 800 to 1500 kg/m(3) range. The porosities were in the range of 48% to 65%. From 50 MHz to 6 GHz and at 190 GHz, permittivity has been determined with a coaxial cell and with a quasi-optical bench, respectively. Results. Without taking into account the volume-scattering effect at 190 GHz, the real part of the permittivity, normalized by the bulk density, is in the range of 2.1 to 2.6. The results suggest that the real part of the permittivity of an ice-free dust mantle covering the nucleus is in the 1.5-2.2 range at 190 GHz. From these values, a lower limit for the absorption length for the millimeter receiver of MIRO has been estimated to be between 0.6 and 2 cm, in agreement with results obtained from MIRO in September 2014. At frequencies of interest for CONSERT experiment, the real part of the permittivity of a suspected ice-free dust mantle should be below 2.2. It may be in the range of 1.2 to 1.7 for the nucleus, in agreement with first CONSERT results, taking into account a mean temperature of 110 K and different values for the dust-to-ice volumetric ratio. Estimations of contributions of the different parameters to the permittivity variation may indicate that the porosity is the main parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. We present an inversion method based on Bayesian analysis to constrain the interior structure of terrestrial exoplanets, in the form of chemical composition of the mantle and core size. Specifically, we identify what parts of the interior structure of terrestrial exoplanets can be determined from observations of mass, radius, and stellar elemental abundances. Methods. We perform a full probabilistic inverse analysis to formally account for observational and model uncertainties and obtain confidence regions of interior structure models. This enables us to characterize how model variability depends on data and associated uncertainties. Results. We test our method on terrestrial solar system planets and find that our model predictions are consistent with independent estimates. Furthermore, we apply our method to synthetic exoplanets up to 10 Earth masses and up to 1.7 Earth radii, and to exoplanet Kepler-36b. Importantly, the inversion strategy proposed here provides a framework for understanding the level of precision required to characterize the interior of exoplanets. Conclusions. Our main conclusions are (1) observations of mass and radius are sufficient to constrain core size; (2) stellar elemental abundances (Fe, Si, Mg) are principal constraints to reduce degeneracy in interior structure models and to constrain mantle composition; (3) the inherent degeneracy in determining interior structure from mass and radius observations does not only depend on measurement accuracies, but also on the actual size and density of the exoplanet. We argue that precise observations of stellar elemental abundances are central in order to place constraints on planetary bulk composition and to reduce model degeneracy. We provide a general methodology of analyzing interior structures of exoplanets that may help to understand how interior models are distributed among star systems. The methodology we propose is sufficiently general to allow its future extension to more complex internal structures including hydrogen- and water-rich exoplanets.