17 resultados para Root-soil Interplay

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current climate change models predict significant changes in rainfall patterns across Europe. To explore the effect of drought on soil CO2 efflux (FSoil) and on the contribution of litter to FSoil we used rain shelters to simulate a summer drought (May to July 2007) in an intensively managed grassland in Switzerland by reducing annual precipitation by around 30% similar to the hot and dry year 2003 in Central Europe. We added 13C-depleted as well as unlabelled grass/clover litter to quantify the litter-derived CO2 efflux (FLitter). Soil CO2 efflux and the 13C/12C isotope ratio (δ13C) of the respired CO2 after litter addition were measured during the growing season 2007. Drought significantly decreased FSoil in our litter addition experiment by 59% and FLitter by 81% during the drought period itself (May to July), indicating that drought had a stronger effect on the CO2 release from litter than on the belowground-derived CO2 efflux (FBG, i.e. soil organic matter (SOM) and root respiration). Despite large bursts in respired CO2 induced by the rewetting after prolonged drought, drought also reduced FSoil and FLitter during the entire 13C measurement period (April to October) by 26% and 37%, respectively. Overall, our findings show that drought decreased FSoil and altered its seasonality and its sources. Thus, the C balance of temperate grassland soils respond sensitively to changes in precipitation, a factor that needs to be considered in regional models predicting the impact of climate change on ecosystems C balance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil spectroscopy was applied for predicting soil organic carbon (SOC) in the highlands of Ethiopia. Soil samples were acquired from Ethiopia’s National Soil Testing Centre and direct field sampling. The reflectance of samples was measured using a FieldSpec 3 diffuse reflectance spectrometer. Outliers and sample relation were evaluated using principal component analysis (PCA) and models were developed through partial least square regression (PLSR). For nine watersheds sampled, 20% of the samples were set aside to test prediction and 80% were used to develop calibration models. Depending on the number of samples per watershed, cross validation or independent validation were used.The stability of models was evaluated using coefficient of determination (R2), root mean square error (RMSE), and the ratio performance deviation (RPD). The R2 (%), RMSE (%), and RPD, respectively, for validation were Anjeni (88, 0.44, 3.05), Bale (86, 0.52, 2.7), Basketo (89, 0.57, 3.0), Benishangul (91, 0.30, 3.4), Kersa (82, 0.44, 2.4), Kola tembien (75, 0.44, 1.9),Maybar (84. 0.57, 2.5),Megech (85, 0.15, 2.6), andWondoGenet (86, 0.52, 2.7) indicating that themodels were stable. Models performed better for areas with high SOC values than areas with lower SOC values. Overall, soil spectroscopy performance ranged from very good to good.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decomposition of soil organic matter (SOM) is temperature dependent, but its response to a future warmer climate remains equivocal. Enhanced rates of decomposition of SOM under increased global temperatures might cause higher CO2 emissions to the atmosphere, and could therefore constitute a strong positive feedback. The magnitude of this feedback however remains poorly understood, primarily because of the difficulty in quantifying the temperature sensitivity of stored, recalcitrant carbon that comprises the bulk (>90%) of SOM in most soils. In this study we investigated the effects of climatic conditions on soil carbon dynamics using the attenuation of the 14C ‘bomb’ pulse as recorded in selected modern European speleothems. These new data were combined with published results to further examine soil carbon dynamics, and to explore the sensitivity of labile and recalcitrant organic matter decomposition to different climatic conditions. Temporal changes in 14C activity inferred from each speleothem was modelled using a three pool soil carbon inverse model (applying a Monte Carlo method) to constrain soil carbon turnover rates at each site. Speleothems from sites that are characterised by semi-arid conditions, sparse vegetation, thin soil cover and high mean annual air temperatures (MAATs), exhibit weak attenuation of atmospheric 14C ‘bomb’ peak (a low damping effect, D in the range: 55–77%) and low modelled mean respired carbon ages (MRCA), indicating that decomposition is dominated by young, recently fixed soil carbon. By contrast, humid and high MAAT sites that are characterised by a thick soil cover and dense, well developed vegetation, display the highest damping effect (D = c. 90%), and the highest MRCA values (in the range from 350 ± 126 years to 571 ± 128 years). This suggests that carbon incorporated into these stalagmites originates predominantly from decomposition of old, recalcitrant organic matter. SOM turnover rates cannot be ascribed to a single climate variable, e.g. (MAAT) but instead reflect a complex interplay of climate (e.g. MAAT and moisture budget) and vegetation development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant communities can be affected both by arbuscular mycorrhizal fungi (AMF) and hemiparasitic plants. However, little is known about the interactive effects of these two biotic factors on the productivity and diversity of plant communities. To address this question, we set up a greenhouse study in which different AMF inocula and a hemiparasitic plant (Rhinanthus minor) were added to experimental grassland communities in a fully factorial design. In addition, single plants of each species in the grassland community were grown with the same treatments to distinguish direct AMF effects from indirect effects via plant competition. We found that AMF changed plant community structure by influencing the plant species differently. At the community level, AMF decreased the productivity by 15-24%, depending on the particular AMF treatment, mainly because two dominant species, Holcus lanatus and Plantago lanceolata, showed a negative mycorrhizal dependency. Concomitantly, plant diversity increased due to AMF inoculation and was highest in the treatment with a combination of two commercial AM strains. AMF had a positive effect on growth of the hemiparasite, and thereby induced a negative impact of the hemiparasite on host plant biomass which was not found in non-inoculated communities. However, the hemiparasite did not increase plant diversity. Our results highlight the importance of interactions with soil microbes for plant community structure and that these indirect effects can vary among AMF treatments. We conclude that mutualistic interactions with AMF, but not antagonistic interactions with a root hemiparasite, promote plant diversity in this grassland community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth, morphogenesis and function of roots are influenced by the concentration and form of nutrients present in soils, including low molecular mass inorganicN(IN, ammonium, nitrate) and organicN(ON, e. g. amino acids). Proteins, ON of high molecular mass, are prevalent in soils but their possible effects on roots have received little attention. Here, we investigated how externally supplied protein of a size typical of soluble soil proteins influences root development of axenically grown Arabidopsis. Addition of low to intermediate concentrations of protein (bovine serum albumen, BSA) to IN-replete growth medium increased root dry weight, root length and thickness, and root hair length. Supply of higher BSA concentrations inhibited root development. These effects were independent of total N concentrations in the growth medium. The possible involvement of phytohormones was investigated using Arabidopsis with defective auxin (tir1-1 and axr2-1) and ethylene (ein2-1) responses. That no phenotype was observed suggests a signalling pathway is operating independent of auxin and ethylene responses. This study expands the knowledge on N form-explicit responses to demonstrate that ON of high molecular mass elicits specific responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and aims Fine root decomposition contributes significantly to element cycling in terrestrial ecosystems. However, studies on root decomposition rates and on the factors that potentially influence them are fewer than those on leaf litter decomposition. To study the effects of region and land use intensity on fine root decomposition, we established a large scale study in three German regions with different climate regimes and soil properties. Methods In 150 forest and 150 grassland sites we deployed litterbags (100 μm mesh size) with standardized litter consisting of fine roots from European beech in forests and from a lowland mesophilous hay meadow in grasslands. In the central study region, we compared decomposition rates of this standardized litter with root litter collected on-site to separate the effect of litter quality from environmental factors. Results Standardized herbaceous roots in grassland soils decomposed on average significantly faster (24 ± 6 % mass loss after 12 months, mean ± SD) than beech roots in forest soils (12 ± 4 %; p < 0.001). Fine root decomposition varied among the three study regions. Land use intensity, in particular N addition, decreased fine root decomposition in grasslands. The initial lignin:N ratio explained 15 % of the variance in grasslands and 11 % in forests. Soil moisture, soil temperature, and C:N ratios of soils together explained 34 % of the variance of the fine root mass loss in grasslands, and 24 % in forests. Conclusions Grasslands, which have higher fine root biomass and root turnover compared to forests, also have higher rates of root decomposition. Our results further show that at the regional scale fine root decomposition is influenced by environmental variables such as soil moisture, soil temperature and soil nutrient content. Additional variation is explained by root litter quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transport of radioactive iodide 131I− in a structured clay loam soil under maize in a final growing phase was monitored during five consecutive irrigation experiments under ponding. Each time, 27 mm of water were applied. The water of the second experiment was spiked with 200 MBq of 131I− tracer. Its activity was monitored as functions of depth and time with Geiger-Müller (G-M) detectors in 11 vertically installed access tubes. The aim of the study was to widen our current knowledge of water and solute transport in unsaturated soil under different agriculturally cultivated settings. It was supposed that the change in 131I− activity (or counting rate) is proportional to the change in soil water content. Rapid increase followed by a gradual decrease in 131I− activity occurred at all depths and was attributed to preferential flow. The iodide transport through structured soil profile was simulated by the HYDRUS 1D model. The model predicted relatively deep percolation of iodide within a short time, in a good agreement with the observed vertical iodide distribution in soil. We found that the top 30 cm of the soil profile is the most vulnerable layer in terms of water and solute movement, which is the same depth where the root structure of maize can extend.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Induced defenses play a key role in plant resistance against leaf feeders. However, very little is known about the signals that are involved in defending plants against root feeders and how they are influenced by abiotic factors. We investigated these aspects for the interaction between rice (Oryza sativa) and two root-feeding insects: the generalist cucumber beetle (Diabrotica balteata) and the more specialized rice water weevil (Lissorhoptrus oryzophilus). Rice plants responded to root attack by increasing the production of jasmonic acid (JA) and abscisic acid, whereas in contrast to in herbivore-attacked leaves, salicylic acid and ethylene levels remained unchanged. The JA response was decoupled from flooding and remained constant over different soil moisture levels. Exogenous application of methyl JA to the roots markedly decreased the performance of both root herbivores, whereas abscisic acid and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid did not have any effect. JA-deficient antisense 13-lipoxygenase (asLOX) and mutant allene oxide cyclase hebiba plants lost more root biomass under attack from both root herbivores. Surprisingly, herbivore weight gain was decreased markedly in asLOX but not hebiba mutant plants, despite the higher root biomass removal. This effect was correlated with a herbivore-induced reduction of sucrose pools in asLOX roots. Taken together, our experiments show that jasmonates are induced signals that protect rice roots from herbivores under varying abiotic conditions and that boosting jasmonate responses can strongly enhance rice resistance against root pests. Furthermore, we show that a rice 13-lipoxygenase regulates root primary metabolites and specifically improves root herbivore growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many insect herbivores feed on belowground plant tissues. In this chapter, we discuss how they have adapted to deal with root primary and secondary metabolites. It is becoming evident that root herbivores can use root volatiles and exudates for host location and foraging. Their complex sensory apparatus suggests a sophisticated recognition and signal transduction system. Furthermore, endogenous metabolites trigger attractive or repellent responses in root feeders, indicating that they may specifically fine-tune food uptake to meet their dietary needs. Little evidence for direct toxic effects of root secondary metabolites has accumulated so far, indicating high prevalence of tolerance mechanisms. Root herbivores furthermore facilitate the entry of soil microbes into the roots, which may influence root nutritional quality. Investigating the role of plant metabolites in an ecologically and physiologically relevant context will be crucial to refine our current models on root-herbivore physiology and behaviour in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Root herbivores are important ecosystem drivers and agricultural pests, and, possibly as a consequence, plants protect their roots using a variety of defensive strategies. One aspect that distinguishes belowground from aboveground plant–insect interactions is that roots are constantly exposed to a set of soil-specific abiotic factors. These factors can profoundly influence root resistance, and, consequently, the outcome of the interaction with belowground feeders. In this review, we synthesize the current literature on the impact of soil moisture, nutrients, and texture on root–herbivore interactions. We show that soil abiotic factors influence the interaction by modulating herbivore abundance and behaviour, root growth and resistance, beneficial microorganisms, as well as natural enemies of the herbivores. We suggest that abiotic heterogeneity may explain the high variability that is often encountered in root–herbivore systems. We also propose that under abiotic stress, the relative fitness value of the roots and the potential negative impact of herbivory increases, which may lead to a higher defensive investment and an increased recruitment of beneficial microorganisms by the plant. At the same time, both root-feeding herbivores and natural enemies are likely to decrease in abundance under extreme environmental conditions, leading to a context- and species-specific impact on plant fitness. Only by using tightly controlled experiments that include soil abiotic heterogeneity will it be possible to understand the impact of root feeders on an ecosystem scale and to develop predictive models for pest occurrence and impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In response to herbivore attack, plants mobilize chemical defenses and release distinct bouquets of volatiles. Aboveground herbivores are known to use changes in leaf volatile patterns to make foraging decisions, but it remains unclear whether belowground herbivores also use volatiles to select suitable host plants. We therefore investigated how above- and belowground infestation affects the performance of the root feeder Diabrotica virgifera virgifera, and whether the larvae of this specialized beetle are able to use volatile cues to assess from a distance whether a potential host plant is already under herbivore attack. Diabrotica virgifera larvae showed stronger growth on roots previously attacked by conspecific larvae, but performed more poorly on roots of plants whose leaves had been attacked by larvae of the moth Spodoptera littoralis. Fittingly, D. virgifera larvae were attracted to plants that were infested with conspecifics, whereas they avoided plants that were attacked by S. littoralis. We identified (E)-β-caryophyllene, which is induced by D. virgifera, and ethylene, which is suppressed by S. littoralis, as two signals used by D. virgifera larvae to locate plants that are most suitable for their development. Our study demonstrates that soil-dwelling insects can use herbivore-induced changes in root volatile emissions to identify suitable host plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Healthy soils are critical to agriculture, and both are essential to enabling food security. Soil-related challenges include using soils and other natural resources sustainably, combating land and soil degradation, avoiding further reduction of soil-related ecosystem services, and ensuring that all agricultural land is managed sustainably. Agricultural challenges include improving the quantity and quality of agricultural outputs to satisfy rising human needs, also in a 2 degrees world; maintaining diversity in agricultural systems while supporting those farms with the highest potential for closing existing yield gaps; and providing a livelihood for about 2.6 billion mostly poor land users. The greatest needs and potentials lie in small-scale farming, although there as elsewhere, trade-offs must be negotiated within the nexus of water, energy, land and food, including the role of soil therein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and aims Differences in chemical composition of root compounds and root systems among tree species may affect organic matter (OM) distribution, source and composition in forest soils. The objective of this study was to elucidate the contribution of species specific cutin and suberin biomarkers as proxies for shoot- and root-derived organic carbon (OC) to soil OM at different depths with increasing distance to the stems of four different tree species. Methods The contribution of cutin- and suberin-derived lipids to OM in a Cutanic Alisol was analyzed with increasing soil depth and distance to the stems of Fagus sylvatica L., Picea abies (L.) Karst., Quercus robur L. and Pseudotsuga menziesii (Mirb.) Franco. Cutin and suberin monomers of plants and soils were analyzed by alkaline hydrolysis and subsequent gas chromatography–mass spectrometry. Results The amount and distribution of suberin-derived lipids in soil clearly reflected the specific root system of the different tree species. The amount of cutin-derived lipids decreased strongly with soil depth, indicating that the input of leaf/needle material is restricted to the topsoil. In contrast to the suberin-derived lipids, the spatial pattern of cutin monomer contribution to soil OM did not depend on tree species. Conclusions Our results document the importance of tree species as a main factor controlling the composition and distribution of OM in forest soils. They reveal the impact of tree species on root-derived OM distribution and the necessity to distinguish among different zones when studying soil OM storage in forests.