8 resultados para Root characteristics
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Mouse molars undergo distal movement, during which new bone is formed at the mesial side of the tooth root whereas the preexisting bone is resorbed at the distal side of the root. However, there is little detailed information available regarding which of the bones that surround the tooth root are involved in physiological tooth movement. In the present study, we therefore aimed to investigate the precise morphological differences of the alveolar bone between the bone formation side of the tooth root, using routine histological procedures including silver impregnation, as well as by immunohistochemical analysis of alkaline phosphatase and tartrate-resistant acid phosphatase activity, and immunohistochemical analysis of the expression of the osteocyte markers dentin matrix protein 1, sclerostin, and fibroblast growth factor 23. Histochemical analysis indicated that bone formation by osteoblasts and bone resorption by osteoclasts occurred at the bone formation side and the bone resorption side, respectively. Osteocyte marker immunoreactivity of osteocytes at the surface of the bone close to the periodontal ligament differed at the bone formation and bone resorption sides. We also showed different specific features of osteocytic lacunar canalicular systems at the bone formation and bone resorption sides by using silver staining. This study suggests that the alveolar bone is different in the osteocyte nature between the bone formation side and the bone resorption side due to physiological distal movement of the mouse molar.
Resumo:
Mechanical testing of the periodontal ligament requires a practical experimental model. Bovine teeth are advantageous in terms of size and availability, but information is lacking as to the anatomy and histology of their periodontium. The aim of this study, therefore, was to characterize the anatomy and histology of the attachment apparatus in fully erupted bovine mandibular first molars. A total of 13 teeth were processed for the production of undecalcified ground sections and decalcified semi-thin sections, for NaOH maceration, and for polarized light microscopy. Histomorphometric measurements relevant to the mechanical behavior of the periodontal ligament included width, number, size and area fraction of blood vessels and fractal analysis of the two hard-soft tissue interfaces. The histological and histomorphometric analyses were performed at four different root depths and at six circumferential locations around the distal and mesial roots. The variety of techniques applied provided a comprehensive view of the tissue architecture of the bovine periodontal ligament. Marked regional variations were observed in width, surface geometry of the two bordering hard tissues (cementum and alveolar bone), structural organization of the principal periodontal ligament connective tissue fibers, size, number and numerical density of blood vessels in the periodontal ligament. No predictable pattern was observed, except for a statistically significant increase in the area fraction of blood vessels from apical to coronal. The periodontal ligament width was up to three times wider in bovine teeth than in human teeth. The fractal analyses were in agreement with the histological observations showing frequent signs of remodeling activity in the alveolar bone - a finding which may be related to the magnitude and direction of occlusal forces in ruminants. Although samples from the apical root portion are not suitable for biomechanical testing, all other levels in the buccal and lingual aspects of the mesial and distal roots may be considered. The bucco-mesial aspect of the distal root appears to be the most suitable location.
Resumo:
PURPOSE The purpose of the present study was to evaluate the thickness and anatomic characteristics of the sinus membrane using cone beam computed tomography (CBCT) in patients evaluated for implant surgery in the posterior maxilla. MATERIALS AND METHODS The study included 131 consecutive patients referred for dental implant placement in the posterior maxilla. A total of 138 CBCT images was obtained using fields of view of 4 × 4 cm, 6 × 6 cm, or 8 × 8 cm. Reformatted sagittal CBCT slices were analyzed with regard to the thickness and characteristics of the sinus membrane at single-tooth gaps in the posterior maxilla. Factors that might influence the dimensions of the sinus membrane, such as age, sex, endodontic status, and the season, were analyzed. RESULTS The mean thickness of the maxillary sinus mucosa varied between 2.1 and 2.69 mm in the three locations analyzed. Fewer than half of the evaluated sinuses exhibited a healthy mucosa (49 of 138, or 35.51%). Most of the pathologic findings were flat, shallow thickenings (63 of 138, or 45.65%). Sex did not influence the thickness of the sinus membrane at the root tips of the premolars or at single-tooth gaps, but there was a statistically significant correlation in the region of the maxillary molars. No other evaluated factors had a statistically significant effect on the dimensions of the antral mucosa. CONCLUSIONS In the present study, sex was the only factor influencing the dimension of the sinus membrane, whereas patient age, season, and the endodontic status of neighboring teeth had no significant effect on the thickness of the antral mucosa. Future studies should address which types of mucosal thickening require interdisciplinary therapy.
Resumo:
Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.
Resumo:
Purpose The sedimentation sign (SedSign) has been shown to discriminate well between selected patients with and without lumbar spinal stenosis (LSS). The purpose of this study was to compare the pressure values associated with LSS versus non-LSS and discuss whether a positive SedSign may be related to increased epidural pressure at the level of the stenosis. Methods We measured the intraoperative epidural pressure in five patients without LSS and a negative SedSign, and in five patients with LSS and a positive SedSign using a Codman TM catheter in prone position under radioscopy. Results Patients with a negative SedSign had a median epidural pressure of 9 mmHg independent of the measurement location. Breath and pulse-synchronous waves accounted for 1–3 mmHg. In patients with monosegmental LSS and a positive SedSign, the epidural pressure above and below the stenosis was similar (median 8–9 mmHg). At the level of the stenosis the median epidural pressure was 22 mmHg. A breath and pulse-synchronous wave was present cranial to the stenosis, but absent below. These findings were independent of the cross-sectional area of the spinal canal at the level of the stenosis. Conclusions Patients with LSS have an increased epidural pressure at the level of the stenosis and altered pressure wave characteristics below. We argue that the absence of sedimentation of lumbar nerve roots to the dorsal part of the dural sac in supine position may be due to tethering of affected nerve roots at the level of the stenosis.
Resumo:
OBJECTIVES To evaluate the location and morphologic characteristics of supernumerary teeth and to assess the frequency and extent of root resorption of adjacent teeth using cone beam computed tomography (CBCT). MATERIALS AND METHODS CBCT scans of 82 patients with supernumerary teeth in the maxilla and mandible were evaluated by two orthodontists independently. Data regarding the type, shape, and three-dimensional (3D) location of the supernumeraries including the frequency and extent of root resorption of adjacent teeth were recorded and evaluated for possible associations. RESULTS The study comprised a total of 101 supernumerary teeth. Most of the patients (80.5 per cent) exhibited one single supernumerary tooth, while 15.8 per cent had two and 3.7 per cent had three supernumeraries. Males were affected more than females with a ratio of 1.65:1. Mesiodentes were the most frequently diagnosed type of supernumerary teeth (48.52 per cent), followed by supernumerary premolars (23.76 per cent) and lateral incisors (18.81 per cent). Supernumeraries were most commonly conical in shape (42.6 per cent) with a normal or inclined vertical position (61.4 per cent). Root resorption of adjacent teeth was detected for 22.8 per cent of the supernumerary teeth, most frequently for supernumerary premolars. There was a significant association between root resorption of adjacent teeth and type and shape of tooth. Interrater agreement for the measurements performed showed kappa values ranging from 0.55 to 1 with a kappa value of 1 for type and shape of the supernumerary teeth. CONCLUSIONS CBCT provides 3D information about location and shape of supernumerary teeth as well as prevalence and degree of root resorption of neighbouring teeth with moderate to high interrater correlation.
Resumo:
SUMMARY BACKGROUND/OBJECTIVES Orthodontic management of maxillary canine impaction (MCI), including forced eruption, may result in significant root resorption; however, the association between MCI and orthodontically induced root resorption (OIRR) is not yet sufficiently established. The purpose of this retrospective cohort study was to comparatively evaluate the severity of OIRR of maxillary incisors in orthodontically treated patients with MCI. Additionally, impaction characteristics were associated with OIRR severity. SUBJECTS AND METHODS The sample comprised 48 patients undergoing fixed-appliance treatment-24 with unilateral/bilateral MCI and 24 matched controls without impaction. OIRR was calculated using pre- and post-operative panoramic tomograms. The orientation of eruption path, height, sector location, and follicle/tooth ratio of the impacted canine were also recorded. Mann-Whitney U-test and univariate and multivariate linear mixed models were used to test for the associations of interest. RESULTS Maxillary central left incisor underwent more OIRR in the impaction group (mean difference = 0.58mm, P = 0.04). Overall, the impaction group had 0.38mm more OIRR compared to the control (95% confidence interval, CI: 0.03, 0.74; P = 0.04). However, multivariate analysis demonstrated no difference in the amount of OIRR between impaction and non-impaction groups overall. A positive association between OIRR and initial root length was observed (95% CI: 0.08, 0.27; P < 0.001). The severity of canine impaction was not found to be a significant predictor of OIRR. LIMITATIONS This study was a retrospective study and used panoramic tomograms for OIRR measurements. CONCLUSIONS This study indicates that MCI is a weak OIRR predictor. Interpretation of the results needs caution due to the observational nature of the present study.
Resumo:
Auxin (IAA) is an important regulator of plant development and root differentiation. Although recent studies indicate that salicylic acid (SA) may also be important in this context by interfering with IAA signaling, comparatively little is known about its impact on the plant’s physiology, metabolism, and growth characteristics. Using carbon-11, a short-lived radioisotope (t 1/2 = 20.4 min) administered as 11CO2 to maize plants (B73), we measured changes in these functions using SA and IAA treatments. IAA application decreased total root biomass, though it increased lateral root growth at the expense of primary root elongation. IAA-mediated inhibition of root growth was correlated with decreased 11CO2 fixation, photosystem II (PSII) efficiency, and total leaf carbon export of 11C-photoassimilates and their allocation belowground. Furthermore, IAA application increased leaf starch content. On the other hand, SA application increased total root biomass, 11CO2 fixation, PSII efficiency, and leaf carbon export of 11C-photoassimilates, but it decreased leaf starch content. IAA and SA induction patterns were also examined after root-herbivore attack by Diabrotica virgifera to place possible hormone crosstalk into a realistic environmental context. We found that 4 days after infestation, IAA was induced in the midzone and root tip, whereas SA was induced only in the upper proximal zone of damaged roots. We conclude that antagonistic crosstalk exists between IAA and SA which can affect the development of maize plants, particularly through alteration of the root system’s architecture, and we propose that the integration of both signals may shape the plant’s response to environmental stress.