15 resultados para Room-temperature ferromagnetic properties

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE The objective of this study was to assess the discriminative power of dual-energy computed tomography (DECT) versus single-energy CT (SECT) to distinguish between ferromagnetic and non-ferromagnetic ballistic projectiles to improve safety regarding magnetic resonance (MR) imaging studies in patients with retained projectiles. MATERIALS AND METHODS Twenty-seven ballistic projectiles including 25 bullets (diameter, 3-15 mm) and 2 shotgun pellets (2 mm each) were examined in an anthropomorphic chest phantom using 128-section dual-source CT. Data acquisition was performed with tube voltages set at 80, 100, 120, and 140 kV(p). Two readers independently assessed CT numbers of the projectile's core on images reconstructed with an extended CT scale. Dual-energy indices (DEIs) were calculated from both 80-/140-kV(p) and 100-/140-kV(p) pairs; receiver operating characteristics curves were fitted to assess ferromagnetic properties by means of CT numbers and DEI. RESULTS Nine (33%) of the projectiles were ferromagnetic; 18 were nonferromagnetic (67%). Interreader and intrareader correlations of CT number measurements were excellent (intraclass correlation coefficients, >0.906; P<0.001). The DEI calculated from both 80/140 and 100/140 kV(p) were significantly (P<0.05) different between the ferromagnetic and non-ferromagnetic projectiles. The area under the curve (AUC) was 0.75 and 0.8 for the tube voltage pairs of 80/140 and 100/140 kV(p) (P<0.05; 95% confidence interval, 0.57-0.94 and 0.62-0.97, respectively) to differentiate between the ferromagnetic and non-ferromagnetic ballistic projectiles; which increased to 0.83 and 0.85 when shotgun pellets were excluded from the analysis. The AUC for SECT was 0.69 and 0.73 (80 and 100 kV[p], respectively). CONCLUSIONS Measurements of DECT combined with an extended CT scale allow for the discrimination of projectiles with non-ferromagnetic from those with ferromagnetic properties in an anthropomorphic chest phantom with a higher AUC compared with SECT. This study indicates that DECT may have the potential to contribute to MR safety and allow for MR imaging of patients with retained projectiles. However, further studies are necessary before this concept may be used to triage clinical patients before MR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work covers the synthesis of second-generation, ethylene glycol dendrons covalently linked to a surface anchor that contains two, three, or four catechol groups, the molecular assembly in aqueous buffer on titanium oxide surfaces, and the evaluation of the resistance of the monomolecular adlayers against nonspecific protein adsorption in contact with full blood serum. The results were compared to those of a linear poly(ethylene glycol) (PEG) analogue with the same molecular weight. The adsorption kinetics as well as resulting surface coverages were monitored by ex situ spectroscopic ellipsometry (VASE), in situ optical waveguide lightmode spectroscopy (OWLS), and quartz crystal microbalance with dissipation (QCM-D) investigations. The expected compositions of the macromolecular films were verified by X-ray photoelectron spectroscopy (XPS). The results of the adsorption study, performed in a high ionic strength ("cloud-point") buffer at room temperature, demonstrate that the adsorption kinetics increase with increasing number of catechol binding moieties and exceed the values found for the linear PEG analogue. This is attributed to the comparatively smaller and more confined molecular volume of the dendritic macromolecules in solution, the improved presentation of the catechol anchor, and/or their much lower cloud-point in the chosen buffer (close to room temperature). Interestingly, in terms of mechanistic aspects of "nonfouling" surface properties, the dendron films were found to be much stiffer and considerably less hydrated in comparison to the linear PEG brush surface, closer in their physicochemical properties to oligo(ethylene glycol) alkanethiol self-assembled monolayers than to conventional brush surfaces. Despite these differences, both types of polymer architectures at saturation coverage proved to be highly resistant toward protein adsorption. Although associated with higher synthesis costs, dendritic macromolecules are considered to be an attractive alternative to linear polymers for surface (bio)functionalization in view of their spontaneous formation of ultrathin, confluent, and nonfouling monolayers at room temperature and their outstanding ability to present functional ligands (coupled to the termini of the dendritic structure) at high surface densities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Standard methods for the estimation of the postmortem interval (PMI, time since death), based on the cooling of the corpse, are limited to about 48 h after death. As an alternative, noninvasive postmortem observation of alterations of brain metabolites by means of (1)H MRS has been suggested for an estimation of the PMI at room temperature, so far without including the effect of other ambient temperatures. In order to study the temperature effect, localized (1)H MRS was used to follow brain decomposition in a sheep brain model at four different temperatures between 4 and 26°C with repeated measurements up to 2100 h postmortem. The simultaneous determination of 25 different biochemical compounds at each measurement allowed the time courses of concentration changes to be followed. A sudden and almost simultaneous change of the concentrations of seven compounds was observed after a time span that decreased exponentially from 700 h at 4°C to 30 h at 26°C ambient temperature. As this represents, most probably, the onset of highly variable bacterial decomposition, and thus defines the upper limit for a reliable PMI estimation, data were analyzed only up to this start of bacterial decomposition. As 13 compounds showed unequivocal, reproducible concentration changes during this period while eight showed a linear increase with a slope that was unambiguously related to ambient temperature. Therefore, a single analytical function with PMI and temperature as variables can describe the time courses of metabolite concentrations. Using the inverse of this function, metabolite concentrations determined from a single MR spectrum can be used, together with known ambient temperatures, to calculate the PMI of a corpse. It is concluded that the effect of ambient temperature can be reliably included in the PMI determination by (1)H MRS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis and the photophysical properties of the complex [Ru(TTF-dppz)(2)(Aqphen)](2+) (TTF = tetrathiafulvalene, dppz = dipyrido-[3,2-a:2',3'-c]phenazine, Aqphen = anthraquinone fused to phenanthroline via a pyrazine bridge) are described. In this molecular triad excitation into the metal ligand charge transfer bands results in the creation of a long-lived charge separated state with TTF acting as electron donor and anthraquinone as terminal acceptor. The lifetime of the charge-separated state is 400 ns in dichloromethane at room temperature. A mechanism for the charge separation involving an intermediate charge-separated state is proposed based on transient absorption spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyetheretherketone (PEEK) is a novel polymer with potential advantages for its use in demanding orthopaedic applications (e.g. intervertebral cages). However, the influence of a physiological environment on the mechanical stability of PEEK has not been reported. Furthermore, the suitability of the polymer for use in highly stressed spinal implants such as intervertebral cages has not been investigated. Therefore, a combined experimental and analytical study was performed to address these open questions. A quasi-static mechanical compression test was performed to compare the initial mechanical properties of PEEK-OPTIMA polymer in a dry, room-temperature and in an aqueous, 37 degrees C environment (n=10 per group). The creep behaviour of cylindrical PEEK polymer specimens (n=6) was measured in a simulated physiological environment at an applied stress level of 10 MPa for a loading duration of 2000 hours (12 weeks). To compare the biomechanical performance of different intervertebral cage types made from PEEK and titanium under complex loading conditions, a three-dimensional finite element model of a functional spinal unit was created. The elastic modulus of PEEK polymer specimens in a physiological environment was 1.8% lower than that of specimens tested at dry, room temperature conditions (P<0.001). The results from the creep test showed an average creep strain of less than 0.1% after 2000 hours of loading. The finite element analysis demonstrated high strain and stress concentrations at the bone/implant interface, emphasizing the importance of cage geometry for load distribution. The stress and strain maxima in the implants were well below the material strength limits of PEEK. In summary, the experimental results verified the mechanical stability of the PEEK-OPTIMA polymer in a simulated physiological environment, and over extended loading periods. Finite element analysis supported the use of PEEK-OPTIMA for load-bearing intervertebral implants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Control of breathing, heart rate, and body temperature are interdependent in infants, where instabilities in thermoregulation can contribute to apneas or even life-threatening events. Identifying abnormalities in thermoregulation is particularly important in the first 6 months of life, where autonomic regulation undergoes critical development. Fluctuations in body temperature have been shown to be sensitive to maturational stage as well as system failure in critically ill patients. We thus aimed to investigate the existence of fractal-like long-range correlations, indicative of temperature control, in night time rectal temperature (T(rec)) patterns in maturing infants. METHODOLOGY/PRINCIPAL FINDINGS: We measured T(rec) fluctuations in infants every 4 weeks from 4 to 20 weeks of age and before and after immunization. Long-range correlations in the temperature series were quantified by the correlation exponent, alpha using detrended fluctuation analysis. The effects of maturation, room temperature, and immunization on the strength of correlation were investigated. We found that T(rec) fluctuations exhibit fractal long-range correlations with a mean (SD) alpha of 1.51 (0.11), indicating that T(rec) is regulated in a highly correlated and hence deterministic manner. A significant increase in alpha with age from 1.42 (0.07) at 4 weeks to 1.58 (0.04) at 20 weeks reflects a change in long-range correlation behavior with maturation towards a smoother and more deterministic temperature regulation, potentially due to the decrease in surface area to body weight ratio in the maturing infant. alpha was not associated with mean room temperature or influenced by immunization CONCLUSIONS: This study shows that the quantification of long-range correlations using alpha derived from detrended fluctuation analysis is an observer-independent tool which can distinguish developmental stages of night time T(rec) pattern in young infants, reflective of maturation of the autonomic system. Detrended fluctuation analysis may prove useful for characterizing thermoregulation in premature and other infants at risk for life-threatening events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature dependent single-crystal X-ray data were collected on amicite K4Na4(Al8Si8O32)·11H2O from Kola Peninsula (Russia) in steps of 25 °C from room temperature to 175 °C and of 50 °C up to 425 °C. At room temperature amicite has space group I2 with a = 10.2112(1), b = 10.4154(1), c = 9.8802(1) Å, β = 88.458(1)°, V = 1050.416(18) Å3. Its crystal structure is based on a Si–Al ordered tetrahedral framework of the GIS type with two systems of eight-membered channels running along the a and c axes. Extraframework K and Na cations are ordered at two fully occupied sites. Above 75 °C amicite was found to partly dehydrate into two separate but coherently intergrown phases, both of space group I2/a, one K-rich ∼K8(Al8Si8O32) ·4H2O (at 75 °C: a = 10.038(2), b = 9.6805(19), c = 9.843(2) Å, β = 89.93(3)°, V = 956.5(3) Å3) and the other Na-rich ∼Na8(Al8Si8O32)·2H2O (at 75 °C: a = 9.759(2), b = 8.9078(18), c = 9.5270(19) Å, β = 89.98(3)°, V = 828.2(3) Å3). Upon further heating above 75 °C the Na- and K-phases lost remaining H2O with only minor influence on the framework structure and became anhydrous at 175 °C and 375 °C, respectively. The two anhydrous phases persisted up to 425 °C. Backscattered electron images of a heated crystal displayed lamellar intergrowth of the K- and Na-rich phases. Exposed to ambient humid conditions K- and Na-rich phases rehydrated and conjoined to the original one phase I2 structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis and photophysical properties of the complex Fe(phen)(2)(TTF-dppz)(2+) (TTF-dppz = 4',5'-bis-(propylthio)tetrathiafulvenylidipyrido3,2-a:2',3'-c-phenazine, phen = 1,10-phenanthroline) are described. In this complex, excitation into the metal ligand charge transfer bands results in the population of a high-spin state of iron(II), with a decay lifetime of approximately 1.5 ns, in dichloromethane, at room temperature. An intraligand charge transfer state can also be obtained and has a lifetime of 38 ps. A mechanism for the different states reached is proposed based on transient absorption spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mantle flow dynamics can cause preferential alignment of olivine crystals that results in anisotropy of physical properties. To interpret anisotropy in mantle rocks, it is necessary to understand the anisotropy of olivine single crystals. We determined anisotropy of magnetic susceptibility (AMS) for natural olivine crystals. High-field AMS allows for the isolation of the anisotropy due to olivine alone. The orientations of the principal susceptibility axes are related to the olivine’s crystallographic structure as soon as it contains >3 wt % FeO. The maximum susceptibility is parallel to the c axis both at room temperature (RT) and at 77 K. The orientation of the minimum axis at RT depends on iron content; it is generally parallel to the a axis in crystals with 3–5 wt % FeO, and along b in samples with 6–10 wt % FeO. The AMS ellipsoid is prolate and the standard deviatoric susceptibility, k0, is on the order of 8*10210 m3/kg for the samples with <1wt % FeO, and ranges from 3.1*1029 m3/kg to 5.7*1029 m3/kg for samples with 3–10 wt % FeO. At 77 K, the minimum susceptibility is along b, independent of iron content. The shape of the AMS ellipsoid is prolate for samples with <5 wt % FeO, but can be prolate or oblate for higher iron content. The degree of anisotropy increases at 77 K with p0 7757.160.5. The results from this study will allow AMS fabrics to be used as a proxy for olivine texture in ultramafic rocks with high olivine content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dehydration behaviour of the zeolite merlinoite, NaK11[Al12Si20O64]·15H2O, from the Khibiny massif (Russia) was studied by means of single-crystal X-ray diffraction conjoined with step-wise heating to 225 C. At room temperature merlinoite has the space group Immm with a = 14.0312(5), b = 14.2675(6), c = 10.0874(4) Å, and V = 2019.40(14) Å3. At 75 °C the merlinoite structure undergoes pronounced dehydration accompanied by a phase transition to a structure that has the space group P42/nmc and remains consistent at elevated temperature. A fully dehydrated phase occurs at 200 °C (at 225 °C: a = 13.341(4), b = 13.341(4), c = 9.707(4) Å, V = 1727.7(12) Å3). Dehydration-induced framework distortion and symmetry were found to be different from those observed for synthetic potassium merlinoite with the K11.5[Al11.5Si20.5O64]·15H2O composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anisotropy of magnetic susceptibility (AMS) is often used as a proxy for mineral fabric in deformed rocks. To do so quantitatively, it is necessary to quantify the intrinsic magnetic anisotropy of single crystals of rock-forming minerals. Amphiboles are common in mafic igneous and metamorphic rocks and often define rock texture due to their general prismatic crystal habits. Amphiboles may dominate the magnetic anisotropy in intermediate to felsic igneous rocks and in some metamorphic rock types, because they have a high Fe concentration and they can develop a strong crystallographic preferred orientation. In this study, the AMS is characterized in 28 single crystals and I crystal aggregate of compositionally diverse clino- and ortho-amphiboles. High-field methods were used to isolate the paramagnetic component of the anisotropy, which is unaffected by ferromagnetic inclusions that often occur in amphibole crystals. Laue imaging, laser ablation-inductively coupled plasma-mass spectrometry, and Mossbauer spectroscopy were performed to relate the magnetic anisotropy to crystal structure and Fe concentration. The minimum susceptibility is parallel to the crystallographic a*-axis and the maximum susceptibility is generally parallel to the crystallographic b-axis in tremolite, actinolite, and hornblende. Gedrite has its minimum susceptibility along the a-axis, and maximum susceptibility aligned with c. In richterite, however, the intermediate susceptibility is parallel to the b-axis and the minimum and maximum susceptibility directions are distributed in the a-c plane. The degree of anisotropy, k', increases generally with Fe concentration, following a linear trend: k' = 1.61 x 10(-9) Fe - 1.17 x 10(-9) m(3)/kg. Additionally, it may depend on the Fe2+/Fe3+ ratio. For most samples, the degree of anisotropy increases by a factor of approximately 8 upon cooling from room temperature to 77 K. Fen-oactinolite, one pargasite crystal and riebeckite show a larger increase, which is related to the onset of local ferromagnetic (s.l.) interactions below about 100 K. This comprehensive data set increases our understanding of the magnetic structure of amphiboles, and it is central to interpreting magnetic fabrics of rocks whose AMS is controlled by amphibole minerals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We perform density functional calculations to investigate the structure of the intermetallic alloy FeRh under epitaxial strain. Bulk FeRh exhibits a metamagnetic transition from a low-temperature antiferromagnetic (AFM) phase to a ferromagnetic phase at 350 K, and its strain dependence is of interest for tuning the transition temperature to the room-temperature operating conditions of typical memory devices. We find an unusually strong dependence of the structural energetics on the choice of exchange-correlation functional, with the usual local density approximation yielding the wrong ground-state structure, and generalized gradient (GGA) extensions being in better agreement with the bulk experimental structure. Using the GGA we show the existence of a metastable face-centered-cubic-like AFM structure that is reached from the ground-state body-centered-cubic-like AFM structure by following the epitaxial Bain path. We show that the behavior is well described using nonlinear elasticity theory, which captures the softening and eventual sign change of the orthorhombic shear modulus under compressive strain, consistent with this structural instability. Finally, we predict the existence of an additional unit-cell-doubling lattice instability, which should be observable at low temperature.