46 resultados para Role of population size
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Leafing phenology of two dry-forest sites on soils of different depth (S = shallow, D = deep) at Shipstern Reserve, Belize, were compared at the start of the rainy season (April-June 2000). Trees greater than or equal to 2.5 cm dbh were recorded weekly for 8 wk in three 0.04-ha plots per site. Ten species were analysed individually for their phenological patterns, of which the three most common were Bursera simaruba, Metopium brownei and Jatropha gaumeri. Trees were divided into those in the canopy (> 10 cm dbh) and the subcanopy (less than or equal to 10 cm dbh). Site S had larger trees on average than site D. The proportion of trees flushing leaves at any one time was generally higher in site S than in site D, for both canopy and subcanopy trees. Leaf flush started 2 wk earlier in site S than site D for subcanopy trees, but only 0.5 wk earlier for the canopy trees. Leaf flush duration was 1.5 wk longer in site S than site D. Large trees in the subcanopy flushed leaves earlier than small ones at both sites but in the canopy just at site D. Large trees flushed leaves earlier than small ones in three species and small trees flushed leaves more rapidly in two species. Bursera and Jatropha followed the general trends but Metopium, with larger trees in site D than site S, showed the converse with onset of flushing I wk earlier in site D than site S. Differences in response of the canopy and subcanopy trees on each site can be accounted for by the predominance of spring-flushing or stem-succulent species in site S and a tendency for evergreen species to occur in site D. Early flushing of relatively larger trees in site D most likely requires access to deeper soil water reserves but small and large trees utilize stored tree water in site S.
Resumo:
Effective population size is an important parameter for the assessment of genetic diversity within a livestock population and its development over time. If pedigree information is not available, linkage disequilibrium (LD) analysis might offer an alternative perspective for the estimation of effective population size. In this study, 128 individuals of the Swiss Eringer breed were genotyped using the Illumina BovineSNP50 beadchip. We set bin size at 50 kb for LD analysis, assuming that LD for proximal single nucleotide polymorphism (SNP)-pairs reflects distant breeding history while LD from distal SNP-pairs would reflect near history. Recombination rates varied among different regions of the genome. The use of physical distances as an approximation of genetic distances (e.g. setting 1 Mb = 0.01 Morgan) led to an upward bias in LD-based estimates of effective population size for generations beyond 50, while estimates for recent history were unaffected. Correction for restricted sample size did not substantially affect these results. LD-based actual effective population size was estimated in the range of 87-149, whereas pedigree-based effective population size resulted in 321 individuals. For conservation purposes, requiring knowledge of recent history (<50 generations), approximation assuming constant recombination rate seemed adequate.
Resumo:
Background Levels of differentiation among populations depend both on demographic and selective factors: genetic drift and local adaptation increase population differentiation, which is eroded by gene flow and balancing selection. We describe here the genomic distribution and the properties of genomic regions with unusually high and low levels of population differentiation in humans to assess the influence of selective and neutral processes on human genetic structure. Methods Individual SNPs of the Human Genome Diversity Panel (HGDP) showing significantly high or low levels of population differentiation were detected under a hierarchical-island model (HIM). A Hidden Markov Model allowed us to detect genomic regions or islands of high or low population differentiation. Results Under the HIM, only 1.5% of all SNPs are significant at the 1% level, but their genomic spatial distribution is significantly non-random. We find evidence that local adaptation shaped high-differentiation islands, as they are enriched for non-synonymous SNPs and overlap with previously identified candidate regions for positive selection. Moreover there is a negative relationship between the size of islands and recombination rate, which is stronger for islands overlapping with genes. Gene ontology analysis supports the role of diet as a major selective pressure in those highly differentiated islands. Low-differentiation islands are also enriched for non-synonymous SNPs, and contain an overly high proportion of genes belonging to the 'Oncogenesis' biological process. Conclusions Even though selection seems to be acting in shaping islands of high population differentiation, neutral demographic processes might have promoted the appearance of some genomic islands since i) as much as 20% of islands are in non-genic regions ii) these non-genic islands are on average two times shorter than genic islands, suggesting a more rapid erosion by recombination, and iii) most loci are strongly differentiated between Africans and non-Africans, a result consistent with known human demographic history.
Resumo:
The prognosis of even early-stage esophageal cancer is poor. Because there is not a consensus on how to manage T2 N0 disease, we examined survival after resection of T2 N0 esophageal cancer, with or without radiation therapy.
Resumo:
Models of population dynamics generally neglect the presence of males. While this assumption holds under many circumstances, behavioural ecology increasingly tells us that the presence (or absence) of males may have an impact on female fitness, and hence population sizes. Here we ask the question of whether males matter to population dynamics, operationally defined as a dependency of population growth on the relative density of males. We provide simple models, and evaluate the current empirical evidence for them, that illustrate various mechanisms of such male influence: mate searching behavior, male resource use (including effects of sexual dimorphism), sexual harassment and sexual segregation. In each case, theory predicts that males can have an effect on population densities, and in some extreme cases a positive feedback between an increasingly male-biased sex ratio and the effects on female harassment may theoretically even bring about population extinction. The results of this study, and the literature reviewed, show that the males can have a substantial effect on population dynamics, particularly so when human influences result in biased sex ratios.
Resumo:
According to life-history theory age-dependent investments into reproduction are thought to co-vary with survival and growth of animals. In polygynous species, in which size is an important determinant of reproductive success, male reproduction via alternative mating tactics at young age are consequently expected to be the less frequent in species with higher survival. We tested this hypothesis in male Alpine ibex (Capra ibex), a highly sexually dimorphic mountain ungulate whose males have been reported to exhibit extremely high adult survival rates. Using data from two offspring cohorts in a population in the Swiss Alps, the effects of age, dominance and mating tactic on the likelihood of paternity were inferred within a Bayesian framework. In accordance with our hypothesis, reproductive success in male Alpine ibex was heavily biased towards older, dominant males that monopolized access to receptive females by adopting the 'tending' tactic, while success among young, subordinate males via the sneaking tactic 'coursing' was in general low and rare. In addition, we detected a high reproductive skew in male Alpine ibex, suggesting a large opportunity for selection. Compared with other ungulates with higher mortality rates, reproduction among young male Alpine ibex was much lower and more sporadic. Consistent with that, further examinations on the species level indicated that in polygynous ungulates the significance of early reproduction appears to decrease with increasing survival. Overall, this study supports the theory that survival prospects of males modulate the investments into reproduction via alternative mating tactics early in life. In the case of male Alpine ibex, the results indicate that their life-history strategy targets for long life, slow and prolonged growth and late reproduction.
Resumo:
A 272-ha grove of dominant Microberlinia bisulcata (Caesalpinioideae) adult trees greater than or equal to 50 cm stem diameter was mapped in its entirety in the southern part of Korup National Park, Cameroon. The approach used an earlier-established 82.5-ha permanent plot with a new surrounding 50-m grid of transect lines. Tree diameters were available from the plot but trees on the grid were recorded as being greater than or equal to 50 cm. The grove consisted of 1028 trees in 2000. Other species occurred within the grove. including the associated subdominants Tetraberlinia bifoliolata and T. korupensis. Microberlinia bisulcata becomes adult at a stein diameter of c. 50 cm and at an estimated age of 50 y. Three oval-shaped subgroves with dimensions c. 8 50 in x 13 50 in (90 ha) were defined. For two of them (within the plot) tree diameters were available. Subgroves differed in their scales and intensities of spatial tree patterns, and in their size frequency distributions, these suggesting differing past dynamics. The modal scale of clumping was 40-50 m. Seed dispersal by pod ejection (to c. 50 in) was evident from the semi-circles of trees at the grove's edge and from the many internal circles (100-200 m diameter). The grove has the capacity. therefore, to increase at c. 100 m per century. To form its present extent and structure. it is inferred that it expanded and infilled from a possibly smaller area of lower adult-tree density. This possibly happened in three waves of recruitment, each one determined by a period of several intense disturbances. Climate records for Africa show that 1740-50 and 1820-30 were periods of drought, and that 1870-1895 was also regionally very dry. Canopy openings allow the light-demanding and fast-growing ectomycorrhizal M. bisulcata to establish, but successive releases are thought to be required to achieve effective recruitment. Nevertheless, in the last 50 y there were no major events and recruitment in the grove was very poor. This present study leads to a new hypothesis of the role of periods of multiple extreme events being the driving factor for the population dynamics of many large African tree species such as M. bisulcata.
Resumo:
Emerging infectious diseases (EIDs) continue to significantly threaten human and animal health. While there has been some progress in identifying underlying proximal driving forces and causal mechanisms of disease emergence, the role of distal factors is most poorly understood. This article focuses on analyzing the statistical association between highly pathogenic avian influenza (HPAI) H5N1 and urbanization, land-use diversity and poultry intensification. A special form of the urban transition—peri-urbanization—was hypothesized as being associated with ‘hot-spots’ of disease emergence. Novel metrics were used to characterize these distal risk factors. Our models, which combined these newly proposed risk factors with previously known natural and human risk factors, had a far higher predictive performance compared to published models for the first two epidemiological waves in Viet Nam. We found that when relevant risk factors are taken into account, urbanization is generally not a significant independent risk factor. However, urbanization spatially combines other risk factors leading to peri-urban places being the most likely ‘hot-spots’. The work highlights that peri-urban areas have highest levels of chicken density, duck and geese flock size diversity, fraction of land under rice, fraction of land under aquaculture compared to rural and urban areas. Land-use diversity, which has previously never been studied in the context of HPAI H5N1, was found to be a significant risk factor. Places where intensive and extensive forms of poultry production are collocated were found to be at greater risk.
Resumo:
We present a record of particulate dust concentration and size distribution in subannual resolution measured on the European Project for Ice Coring in Antarctica (EPICA) Dronning Maud Land (EDML) ice core drilled in the Atlantic sector of the East Antarctic plateau. The record reaches from present day back to the penultimate glacial until 145,000 years B.P. with subannual resolution from 60,000 years B.P. to the present. Mean dust concentrations are a factor of 46 higher during the glacial (~850–4600 ng/mL) compared to the Holocene (~16–112 ng/mL) with slightly smaller dust particles during the glacial comparedto the Holocene and with an absolute minimum in the dust size at 16,000 years B.P. The changes in dust concentration are mainly attributed to changes in source conditions in southern South America. An increase in the modal value of the dust size suggests that at 16,000 years B.P. a major change in atmospheric circulation apparently allowed more direct transport of dust particles to the EDML drill site. We find a clear in-phase relation of the seasonal variation in dust mass concentration and dust size during the glacial
(r(conc,size) = 0.8) but no clear phase relationship during the Holocene (0
Resumo:
The Janzen–Connell hypothesis proposes that specialized herbivores maintain high numbers of tree species in tropical forests by restricting adult recruitment so that host populations remain at low densities. We tested this prediction for the large timber tree species, Swietenia macrophylla, whose seeds and seedlings are preyed upon by small mammals and a host-specific moth caterpillar Steniscadia poliophaea, respectively. At a primary forest site, experimental seed additions to gaps – canopy-disturbed areas that enhance seedling growth into saplings – over three years revealed lower survival and seedling recruitment closer to conspecific trees and in higher basal area neighborhoods, as well as reduced subsequent seedling survival and height growth. When we included these Janzen–Connell effects in a spatially explicit individual-based population model, the caterpillar's impact was critical to limiting Swietenia's adult tree density, with a > 10-fold reduction estimated at 300 years. Our research demonstrates the crucial but oft-ignored linkage between Janzen–Connell effects on offspring and population-level consequences for a long-lived, potentially dominant tree species.