29 resultados para Robust adaptive control
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
When proposing primary control (changing the world to fit self)/secondary control (changing self to fit the world) theory, Weisz et al. (1984) argued for the importance of the “serenity to accept the things I cannot change, the courage to change the things I can” (p. 967), and the wisdom to choose the right control strategy that fits the context. Although the dual processes of control theory generated hundreds of empirical studies, most of them focused on the dichotomy of PC and SC, with none of these tapped into the critical concept: individuals’ ability to know when to use what. This project addressed this issue by using scenario questions to study the impact of situationally adaptive control strategies on youth well-being. To understand the antecedents of youths’ preference for PC or SC, we also connected PCSC theory with Dweck’s implicit theory about the changeability of the world. We hypothesized that youths’ belief about the world’s changeability impacts how difficult it was for them to choose situationally adaptive control orientation, which then impacts their well-being. This study included adolescents and emerging adults between the ages of 18 and 28 years (Mean = 20.87 years) from the US (n = 98), China (n = 100), and Switzerland (n = 103). Participants answered a questionnaire including a measure of implicit theories about the fixedness of the external world, a scenario-based measure of control orientation, and several measures of well-being. Preliminary analyses of the scenario-based control orientation measures showed striking cross-cultural similarity of preferred control responses: while for three of the six scenarios primary control was the predominately chosen control response in all cultures, for the other three scenarios secondary control was the predominately chosen response. This suggested that youths across cultures are aware that some situations call for primary control, while others demand secondary control. We considered the control strategy winning the majority of the votes to be the strategy that is situationally adaptive. The results of a multi-group structural equation mediation model with the extent of belief in a fixed world as independent variable, the difficulties of carrying out the respective adaptive versus non-adaptive control responses as two mediating variables and the latent well-being variable as dependent variable showed a cross-culturally similar pattern of effects: a belief in a fixed world was significantly related to higher difficulties in carrying out the normative as well as the non-normative control response, but only the difficulty of carrying out the normative control response (be it primary control in situations where primary control is normative or secondary control in situations where secondary control is normative) was significantly related to a lower reported well-being (while the difficulty of carrying out the non-normative response was unrelated to well-being). While previous research focused on cross-cultural differences on the choice of PC or SC, this study shed light on the universal necessity of applying the right kind of control to fit the situation.
Resumo:
Abstract. Lakes Prespa and Ohrid, in the Balkan region, are considered to be amongst the oldest lakes in Europe. Both lakes are hydraulically connected via karst aquifers. From Lake Ohrid, several sediment cores up to 15m long have been studied over the last few years. Here, we document the first long sediment record from nearby Lake Prespa to clarify the influence of Lake Prespa on Lake Ohrid and the environmental history of the region. Radiocarbon dating and dated tephra layers provide robust age control and indicate that the 10.5m long sediment record from Lake Prespa reaches back to 48 ka. Glacial sedimentation is characterized by low organic matter content and absence of carbonates in the sediments, which indicate oligotrophic conditions in both lakes. Holocene sedimentation is characterized by particularly high carbonate content in Lake Ohrid and by particularly high organic matter content in Lake Prespa, which indicates a shift towards more mesotrophic conditions in the latter. Long-term environmental change and short-term events, such as related to the Heinrich events during the Pleistocene or the 8.2 ka cooling event during the Holocene, are well recorded in both lakes, but are only evident in certain proxies. The comparison of the sediment cores from both lakes indicates that environmental change affects particularly the trophic state of Lake Prespa due to its lower volume and water depth.
Resumo:
Historical information is always relevant for clinical trial design. Additionally, if incorporated in the analysis of a new trial, historical data allow to reduce the number of subjects. This decreases costs and trial duration, facilitates recruitment, and may be more ethical. Yet, under prior-data conflict, a too optimistic use of historical data may be inappropriate. We address this challenge by deriving a Bayesian meta-analytic-predictive prior from historical data, which is then combined with the new data. This prospective approach is equivalent to a meta-analytic-combined analysis of historical and new data if parameters are exchangeable across trials. The prospective Bayesian version requires a good approximation of the meta-analytic-predictive prior, which is not available analytically. We propose two- or three-component mixtures of standard priors, which allow for good approximations and, for the one-parameter exponential family, straightforward posterior calculations. Moreover, since one of the mixture components is usually vague, mixture priors will often be heavy-tailed and therefore robust. Further robustness and a more rapid reaction to prior-data conflicts can be achieved by adding an extra weakly-informative mixture component. Use of historical prior information is particularly attractive for adaptive trials, as the randomization ratio can then be changed in case of prior-data conflict. Both frequentist operating characteristics and posterior summaries for various data scenarios show that these designs have desirable properties. We illustrate the methodology for a phase II proof-of-concept trial with historical controls from four studies. Robust meta-analytic-predictive priors alleviate prior-data conflicts ' they should encourage better and more frequent use of historical data in clinical trials.
Resumo:
The Alpine lake whitefish (Coregonus lavaretus) species complex is a classic example of a recent radiation, associated with colonization of the Alpine lakes following the glacial retreat (less than 15 kyr BP). They have formed a unique array of endemic lake flocks, each with one to six described sympatric species differing in morphology, diet and reproductive ecology. Here, we present a genomic investigation of the relationships between and within the lake flocks. Comparing the signal between over 1000 AFLP loci and mitochondrial control region sequence data, we use phylogenetic tree-based and population genetic methods to reconstruct the phylogenetic history of the group and to delineate the principal centres of genetic diversity within the radiation. We find significant cytonuclear discordance showing that the genomically monophyletic Alpine whitefish clade arose from a hybrid swarm of at least two glacial refugial lineages. Within this radiation, we find seven extant genetic clusters centred on seven lake systems. Most interestingly, we find evidence of sympatric speciation within and parallel evolution of equivalent phenotypes among these lake systems. However, we also find the genetic signature of human-mediated gene flow and diversity loss within many lakes, highlighting the fragility of recent radiations.
Resumo:
The three-spined stickleback is a widespread Holarctic species complex that radiated from the sea into freshwaters after the retreat of the Pleistocene ice sheets. In Switzerland, sticklebacks were absent with the exception of the far northwest, but different introduced populations have expanded to occupy a wide range of habitats since the late 19th century. A well-studied adaptive phenotypic trait in sticklebacks is the number of lateral plates. With few exceptions, freshwater and marine populations in Europe are fixed for either the low plated phenotype or the fully plated phenotype, respectively. Switzerland, in contrast, harbours in close proximity the full range of phenotypic variation known from across the continent. We addressed the phylogeographic origins of Swiss sticklebacks using mitochondrial partial cytochrome b and control region sequences. We found only five different haplotypes but these originated from three distinct European regions, fixed for different plate phenotypes. These lineages occur largely in isolation at opposite ends of Switzerland, but co-occur in a large central part. Across the country, we found a strong correlation between a microsatellite linked to the high plate ectodysplasin allele and the mitochondrial haplotype from a region where the fully plated phenotype is fixed. Phylogenomic and population genomic analysis of 481 polymorphic amplified fragment length polymorphism loci indicate genetic admixture in the central part of the country. The same part of the country also carries elevated within-population phenotypic variation. We conclude that during the recent invasive range expansion of sticklebacks in Switzerland, adaptive and neutral between-population genetic variation was converted into within-population variation, raising the possibility that hybridization between colonizing lineages contributed to the ecological success of sticklebacks in Switzerland.
Resumo:
Prediction of glycemic profile is an important task for both early recognition of hypoglycemia and enhancement of the control algorithms for optimization of insulin infusion rate. Adaptive models for glucose prediction and recognition of hypoglycemia based on statistical and artificial intelligence techniques are presented.
Resumo:
Plasmacytoid dendritic cells (pDCs) are the major producers of type I IFN in response to viral infection and have been shown to direct both innate and adaptive immune responses in vitro. However, in vivo evidence for their role in viral infection is lacking. We evaluated the contribution of pDCs to acute and chronic virus infection using the feeble mouse model of pDC functional deficiency. We have previously demonstrated that feeble mice have a defect in TLR ligand sensing. Although pDCs were found to influence early cytokine secretion, they were not required for control of viremia in the acute phase of the infection. However, T cell priming was deficient in the absence of functional pDCs and the virus-specific immune response was hampered. Ultimately, infection persisted in feeble mice. We conclude that pDCs are likely required for efficient T cell priming and subsequent viral clearance. Our data suggest that reduced pDC functionality may lead to chronic infection.
Resumo:
The time-course of dark adaptation provides valuable insights into the function and interactions between the rod and cone pathways in the retina. Here we describe a technique that uses the flash electroretinogram (ERG) response to probe the functional integrity of the cone and rod pathways during the dynamic process of dark adaptation in the mouse. Retinal sensitivity was estimated from the stimulus intensity required to maintain a 30 microV criterion b-wave response during a 40 min period of dark adaptation. When tracked in this manner, dark adaptation functions in WT mice depended upon the bleaching effects of initial background adaptation conditions. Altered dark adaptation functions, commensurate with the functional deficit were recorded in pigmented mice that lacked cone function (Gnat2 ( cplf3 )) and in WT mice injected with a toxin, sodium iodate (NaIO(3)), which targets the retinal pigment epithelium and also has downstream effects on photoreceptors. These data demonstrate that this adaptive tracking procedure measures retinal sensitivity and the contributions of the rod and/or cone pathways during dark adaptation in both WT control and mutant mice.
Resumo:
Recent studies suggest that computerized cognitive training leads to improved performance in related but untrained tasks (i.e. transfer effects). However, most study designs prevent disentangling which of the task components are necessary for transfer. In the current study, we examined whether training on two variants of the adaptive dual n-back task would affect untrained task performance and the corresponding electrophysiological event-related potentials (ERPs). Forty three healthy young adults were trained for three weeks with a high or low interference training variant of the dual n-back task, or they were assigned to a passive control group. While n-back training with high interference led to partial improvements in the Attention Network Test (ANT), we did not find transfer to measures of working memory and fluid intelligence. ERP analysis in the n-back task and the ANT indicated overlapping processes in the P3 time range. Moreover, in the ANT, we detected increased parietal activity for the interference training group alone. In contrast, we did not find electrophysiological differences between the low interference training and the control group. These findings suggest that training on an interference control task leads to higher electrophysiological activity in the parietal cortex, which may be related to improvements in processing speed, attentional control, or both.
Resumo:
The goal of this roadmap paper is to summarize the state-of-the-art and identify research challenges when developing, deploying and managing self-adaptive software systems. Instead of dealing with a wide range of topics associated with the field, we focus on four essential topics of self-adaptation: design space for self-adaptive solutions, software engineering processes for self-adaptive systems, from centralized to decentralized control, and practical run-time verification & validation for self-adaptive systems. For each topic, we present an overview, suggest future directions, and focus on selected challenges. This paper complements and extends a previous roadmap on software engineering for self-adaptive systems published in 2009 covering a different set of topics, and reflecting in part on the previous paper. This roadmap is one of the many results of the Dagstuhl Seminar 10431 on Software Engineering for Self-Adaptive Systems, which took place in October 2010.
Resumo:
The paper presents a link layer stack for wireless sensor networks, which consists of the Burst-aware Energy-efficient Adaptive Medium access control (BEAM) and the Hop-to-Hop Reliability (H2HR) protocol. BEAM can operate with short beacons to announce data transmissions or include data within the beacons. Duty cycles can be adapted by a traffic prediction mechanism indicating pending packets destined for a node and by estimating its wake-up times. H2HR takes advantage of information provided by BEAM such as neighbour information and transmission information to perform per-hop congestion control. We justify the design decisions by measurements in a real-world wireless sensor network testbed and compare the performance with other link layer protocols.
Resumo:
This paper is a summary of the main contribu- tions of the PhD thesis published in [1]. The main research contributions of the thesis are driven by the research question how to design simple, yet efficient and robust run-time adaptive resource allocation schemes within the commu- nication stack of Wireless Sensor Network (WSN) nodes. The thesis addresses several problem domains with con- tributions on different layers of the WSN communication stack. The main contributions can be summarized as follows: First, a a novel run-time adaptive MAC protocol is intro- duced, which stepwise allocates the power-hungry radio interface in an on-demand manner when the encountered traffic load requires it. Second, the thesis outlines a metho- dology for robust, reliable and accurate software-based energy-estimation, which is calculated at network run- time on the sensor node itself. Third, the thesis evaluates several Forward Error Correction (FEC) strategies to adap- tively allocate the correctional power of Error Correcting Codes (ECCs) to cope with timely and spatially variable bit error rates. Fourth, in the context of TCP-based communi- cations in WSNs, the thesis evaluates distributed caching and local retransmission strategies to overcome the perfor- mance degrading effects of packet corruption and trans- mission failures when transmitting data over multiple hops. The performance of all developed protocols are eval- uated on a self-developed real-world WSN testbed and achieve superior performance over selected existing ap- proaches, especially where traffic load and channel condi- tions are suspect to rapid variations over time.
Resumo:
We propose a method that robustly combines color and feature buffers to denoise Monte Carlo renderings. On one hand, feature buffers, such as per pixel normals, textures, or depth, are effective in determining denoising filters because features are highly correlated with rendered images. Filters based solely on features, however, are prone to blurring image details that are not well represented by the features. On the other hand, color buffers represent all details, but they may be less effective to determine filters because they are contaminated by the noise that is supposed to be removed. We propose to obtain filters using a combination of color and feature buffers in an NL-means and cross-bilateral filtering framework. We determine a robust weighting of colors and features using a SURE-based error estimate. We show significant improvements in subjective and quantitative errors compared to the previous state-of-the-art. We also demonstrate adaptive sampling and space-time filtering for animations.
Resumo:
Ventricular assist devices (VADs) are blood pumps that offer an option to support the circulation of patients with severe heart failure. Since a failing heart has a remaining pump function, its interaction with the VAD influences the hemodynamics. Ideally, the heart's action is taken into account for actuating the device such that the device is synchronized to the natural cardiac cycle. To realize this in practice, a reliable real-time algorithm for the automatic synchronization of the VAD to the heart rate is required. This paper defines the tasks such an algorithm needs to fulfill: the automatic detection of irregular heart beats and the feedback control of the phase shift between the systolic phases of the heart and the assist device. We demonstrate a possible solution to these problems and analyze its performance in two steps. First, the algorithm is tested using the MIT-BIH arrhythmia database. Second, the algorithm is implemented in a controller for a pulsatile and a continuous-flow VAD. These devices are connected to a hybrid mock circulation where three test scenarios are evaluated. The proposed algorithm ensures a reliable synchronization of the VAD to the heart cycle, while being insensitive to irregularities in the heart rate.
Resumo:
Primary control is defined as changing the world to fit the self, while secondary control is defined as changing the self to fit the world. To understand why different individuals prefer different kinds of control processes, we proposed a research project looking at US, German and Indian young adults. We hypothesize that theories of self and the world (fixed vs. malleable; Dweck, 1999) affect the prevailing mode of control used. Furthermore, adolescents’ cultural background is assumed to affect their self-world theories as well as the adaptiveness of specific modes of control. For example, in the US, where the self is tended to be seen as fixed and the world as malleable, primary control prevails and is more adaptive than secondary control while the reverse is expected for India. We present the theoretical outline and methodology of the study as well as first results.