56 resultados para Robot arm
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We have developed a haptic-based approach for retraining of interjoint coordination following stroke called time-independent functional training (TIFT) and implemented this mode in the ARMin III robotic exoskeleton. The ARMin III robot was developed by Drs. Robert Riener and Tobias Nef at the Swiss Federal Institute of Technology Zurich (Eidgenossische Technische Hochschule Zurich, or ETH Zurich), in Zurich, Switzerland. In the TIFT mode, the robot maintains arm movements within the proper kinematic trajectory via haptic walls at each joint. These arm movements focus training of interjoint coordination with highly intuitive real-time feedback of performance; arm movements advance within the trajectory only if their movement coordination is correct. In initial testing, 37 nondisabled subjects received a single session of learning of a complex pattern. Subjects were randomized to TIFT or visual demonstration or moved along with the robot as it moved though the pattern (time-dependent [TD] training). We examined visual demonstration to separate the effects of action observation on motor learning from the effects of the two haptic guidance methods. During these training trials, TIFT subjects reduced error and interaction forces between the robot and arm, while TD subject performance did not change. All groups showed significant learning of the trajectory during unassisted recall trials, but we observed no difference in learning between groups, possibly because this learning task is dominated by vision. Further testing in stroke populations is warranted.
Resumo:
BACKGROUND: Arm hemiparesis secondary to stroke is common and disabling. We aimed to assess whether robotic training of an affected arm with ARMin--an exoskeleton robot that allows task-specific training in three dimensions-reduces motor impairment more effectively than does conventional therapy. METHODS: In a prospective, multicentre, parallel-group randomised trial, we enrolled patients who had had motor impairment for more than 6 months and moderate-to-severe arm paresis after a cerebrovascular accident who met our eligibility criteria from four centres in Switzerland. Eligible patients were randomly assigned (1:1) to receive robotic or conventional therapy using a centre-stratified randomisation procedure. For both groups, therapy was given for at least 45 min three times a week for 8 weeks (total 24 sessions). The primary outcome was change in score on the arm (upper extremity) section of the Fugl-Meyer assessment (FMA-UE). Assessors tested patients immediately before therapy, after 4 weeks of therapy, at the end of therapy, and 16 weeks and 34 weeks after start of therapy. Assessors were masked to treatment allocation, but patients, therapists, and data analysts were unmasked. Analyses were by modified intention to treat. This study is registered with ClinicalTrials.gov, number NCT00719433. FINDINGS: Between May 4, 2009, and Sept 3, 2012, 143 individuals were tested for eligibility, of whom 77 were eligible and agreed to participate. 38 patients assigned to robotic therapy and 35 assigned to conventional therapy were included in analyses. Patients assigned to robotic therapy had significantly greater improvements in motor function in the affected arm over the course of the study as measured by FMA-UE than did those assigned to conventional therapy (F=4.1, p=0.041; mean difference in score 0.78 points, 95% CI 0.03-1.53). No serious adverse events related to the study occurred. INTERPRETATION: Neurorehabilitation therapy including task-oriented training with an exoskeleton robot can enhance improvement of motor function in a chronically impaired paretic arm after stroke more effectively than conventional therapy. However, the absolute difference between effects of robotic and conventional therapy in our study was small and of weak significance, which leaves the clinical relevance in question.
Resumo:
BACKGROUND: Robot-assisted therapy offers a promising approach to neurorehabilitation, particularly for severely to moderately impaired stroke patients. The objective of this study was to investigate the effects of intensive arm training on motor performance in four chronic stroke patients using the robot ARMin II. METHODS: ARMin II is an exoskeleton robot with six degrees of freedom (DOF) moving shoulder, elbow and wrist joints. Four volunteers with chronic (>or= 12 months post-stroke) left side hemi-paresis and different levels of motor severity were enrolled in the study. They received robot-assisted therapy over a period of eight weeks, three to four therapy sessions per week, each session of one hour.Patients 1 and 4 had four one-hour training sessions per week and patients 2 and 3 had three one-hour training sessions per week. Primary outcome variable was the Fugl-Meyer Score of the upper extremity Assessment (FMA), secondary outcomes were the Wolf Motor Function Test (WMFT), the Catherine Bergego Scale (CBS), the Maximal Voluntary Torques (MVTs) and a questionnaire about ADL-tasks, progress, changes, motivation etc. RESULTS: Three out of four patients showed significant improvements (p < 0.05) in the main outcome. The improvements in the FMA scores were aligned with the objective results of MVTs. Most improvements were maintained or even increased from discharge to the six-month follow-up. CONCLUSION: Data clearly indicate that intensive arm therapy with the robot ARMin II can significantly improve motor function of the paretic arm in some stroke patients, even those in a chronic state. The findings of the study provide a basis for a subsequent controlled randomized clinical trial.
Resumo:
Task-oriented, repetitive and intensive arm training can enhance arm rehabilitation in patients with paralyzed upper extremities due to lesions of the central nervous system. There is evidence that the training duration is a key factor for the therapy progress. Robot-supported therapy can improve the rehabilitation allowing more intensive training. This paper presents the kinematics, the control and the therapy modes of the arm therapy robot ARMin. It is a haptic display with semi-exoskeleton kinematics with four active and two passive degrees of freedom. Equipped with position, force and torque sensors the device can deliver patient-cooperative arm therapy taking into account the activity of the patient and supporting him/her only as much as needed. The haptic display is combined with an audiovisual display that is used to present the movement and the movement task to the patient. It is assumed that the patient-cooperative therapy approach combined with a multimodal display can increase the patient's motivation and activity and, therefore, the therapeutic progress.
Resumo:
Robot-assisted therapy has become increasingly common in neurorehabilitation. Sophisticated controllers have been developed for robots to assist and cooperate with the patient. It is difficult for the patient to judge to what extent the robot contributes to the execution of a movement. Therefore, methods to comprehensively quantify the patient's contribution and provide feedback are of key importance. We developed a method comprehensively to estimate the patient's contribution by combining kinematic measures and the motor assistance applied. Inverse dynamic models of the robot and the passive human arm calculate the required torques to move the robot and the arm and build, together with the recorded motor torque, a metric (in percentage) that represents the patient's contribution to the movement. To evaluate the developed metric, 12 nondisabled subjects and 7 patients with neurological problems simulated instructed movement contributions. The results are compared with a common performance metric. The estimation shows very satisfying results for both groups, even though the arm model used was strongly simplified. Displaying this metric to patients during therapy can potentially motivate them to actively participate in the training.
Resumo:
Rehabilitation robots have become important tools in stroke rehabilitation. Compared to manual arm training, robot-supported training can be more intensive, of longer duration and more repetitive. Therefore, robots have the potential to improve the rehabilitation process in stroke patients. Whereas a majority of previous work in upper limb rehabilitation robotics has focused on end-effector-based robots, a shift towards exoskeleton robots is taking place because they offer a better guidance of the human arm, especially for movements with a large range of motion. However, the implementation of an exoskeleton device introduces the challenge of reproducing the motion of the human shoulder, which is one of the most complex joints of the body. Thus, this paper starts with describing a simplified model of the human shoulder. On the basis of that model, a new ergonomic shoulder actuation principle that provides motion of the humerus head is proposed, and its implementation in the ARMin III arm therapy robot is described. The focus lies on the mechanics and actuation principle. The ARMin III robot provides three actuated degrees of freedom for the shoulder and one for the elbow joint. An additional module provides actuated lower arm pro/supination and wrist flexion/extension. Five ARMin III devices have been manufactured and they are currently undergoing clinical evaluation in hospitals in Switzerland and in the United States.
Resumo:
Task-oriented repetitive movements can improve motor recovery in patients with neurological or orthopaedic lesions. The application of robotics can serve to assist, enhance, evaluate, and document neurological and orthopaedic rehabilitation. ARMin is a new robot for arm therapy applicable to the training of activities of daily living in clinics. ARMin has a semiexoskeletal structure with six degrees of freedom, and is equipped with position and force sensors. The mechanical structure, the actuators and the sensors of the robot are optimized for patient-cooperative control strategies based on impedance and admittance architectures. This paper describes the mechanical structure, the control system, the sensors and actuators, safety aspects and results of a first pilot study with hemiplegic and spinal cord injured subjects.
Resumo:
We investigated the feasibility and safety of four-arm robotic lung lobectomy in patients with lung cancer and described the robotic lobectomy technique with mediastinal lymph node dissection.
Resumo:
OBJECTIVES: The aim of this study was to compare the long-term outcomes of implants placed in patients treated for periodontitis periodontally compromised patients (PCP) and in periodontally healthy patients (PHP) in relation to adhesion to supportive periodontal therapy (SPT). MATERIAL AND METHODS: One hundred and twelve partially edentulous patients were consecutively enrolled in private specialist practice and divided into three groups according to their initial periodontal condition: PHP, moderate PCP and severe PCP. Perio and implant treatment was carried out as needed. Solid screws (S), hollow screws (HS) and hollow cylinders (HC) were installed to support fixed prostheses, after successful completion of initial periodontal therapy (full-mouth plaque score <25% and full-mouth bleeding score <25%). At the end of treatment, patients were asked to follow an individualized SPT program. At 10 years, clinical measures and radiographic bone changes were recorded by two calibrated operators, blinded to the initial patient classification. RESULTS: Eleven patients were lost to follow-up. During the period of observation, 18 implants were removed because of biological complications. The implant survival rate was 96.6%, 92.8% and 90% for all implants and 98%, 94.2% and 90% for S-implants only, respectively, for PHP, moderate PCP and severe PCP. The mean bone loss was 0.75 (+/- 0.88) mm in PHP, 1.14 (+/- 1.11) mm in moderate PCP and 0.98 (+/- 1.22) mm in severe PCP, without any statistically significant difference. The percentage of sites, with bone loss > or =3 mm, was, respectively, 4.7% for PHP, 11.2% for moderate PCP and 15.1% for severe PCP, with a statistically significant difference between PHP and severe PCP (P<0.05). Lack of adhesion to SPT was correlated with a higher incidence of bone loss and implant loss. CONCLUSION: Patients with a history of periodontitis presented a lower survival rate and a statistically significantly higher number of sites with peri-implant bone loss. Furthermore, PCP, who did not completely adhere to the SPT, were found to present a higher implant failure rate. This underlines the value of the SPT in enhancing the long-term outcomes of implant therapy, particularly in subjects affected by periodontitis, in order to control reinfection and limit biological complications.
Resumo:
pegylated liposomal doxorubicin (PLD) and bevacizumab are active agents in the treatment of metastatic breast cancer (MBC). We carried out a multicenter, single-arm phase II trial to evaluate the toxicity and efficacy of PLD and bevacizumab as first-line treatment in MBC patients.
Resumo:
In the past decade, several arm rehabilitation robots have been developed to assist neurological patients during therapy. Early devices were limited in their number of degrees of freedom and range of motion, whereas newer robots such as the ARMin robot can support the entire arm. Often, these devices are combined with virtual environments to integrate motivating game-like scenarios. Several studies have shown a positive effect of game-playing on therapy outcome by increasing motivation. In addition, we assume that practicing highly functional movements can further enhance therapy outcome by facilitating the transfer of motor abilities acquired in therapy to daily life. Therefore, we present a rehabilitation system that enables the training of activities of daily living (ADL) with the support of an assistive robot. Important ADL tasks have been identified and implemented in a virtual environment. A patient-cooperative control strategy with adaptable freedom in timing and space was developed to assist the patient during the task. The technical feasibility and usability of the system was evaluated with seven healthy subjects and three chronic stroke patients.