65 resultados para Ridge Regression
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVES: The aim of the present study was to histologically evaluate and compare a new prototype collagen type I/III-containing equine- (EB) and a bovine- (BB) derived cancellous bone block in a dog model. MATERIALS AND METHODS: Four standardized box-shaped defects were bilaterally created at the buccal aspect of the alveolar ridge in the lower jaws of five beagle dogs and randomly allocated to either EB or BB. Each experimental site was covered by a native (non-crosslinked) collagen membrane and left to heal in a submerged position for 12 weeks. Dissected blocks were processed for semi-/and quantitative analyses. RESULTS: Both groups had no adverse clinical or histopathological events (i.e. inflammatory/foreign body reactions). BB specimens revealed no signs of biodegradation and were commonly embedded in a fibrous connective tissue. New bone formation and bony graft integration were minimal. In contrast, EB specimens were characterized by a significantly increased cell (i.e. osteoclasts and multinucleated giant cells)-mediated degradation of the graft material (P<0.001). The amount and extent of bone ingrowth was consistently higher in all EB specimens, but failed to reach statistical significance in comparison with the BB group (P>0.05). CONCLUSIONS: It was concluded that the application of EB may not be associated with an improved bone formation than BB.
Resumo:
Healthy, well-structured mucosa may clinically disguise atrophic jawbone in preimplant diagnosis.
Resumo:
In implant dentistry, there is a need for synthetic bone substitute blocks to support ridge augmentation in situations where large bone volumes are missing. Polycaprolactone-based scaffolds demonstrated excellent results in bone tissue engineering applications. The use of customized polycaprolactone-tricalcium phosphate (PCL-TCP) displayed promising results from recent rat femur and rabbit calvaria studies. However, data from clinically representative models in larger animals do not exist.
Resumo:
OBJECTIVES: One main problem occurring after bone grafting is resorption, leading to insufficient bone volume and quality, and may subsequently cause dental implant failure. Comparison of graft volume and bone density of iliac crest and calvarial transplants determined by animal studies demonstrates significantly lower resorption of bone grafts harvested from the skull. This paper is the first clinical study evaluating bone volume and density changes of calvarial split bone grafts after alveolar ridge reconstruction. MATERIAL AND METHODS: Bone volume and density were determined using CT scans and the software program Dicom Works in a total of 51 calvarial grafts after alveolar ridge augmentation in 15 patients. CT scans were taken in all 15 patients immediately after grafting (T0) and before implantation after a postoperative period of 6 months (T1). In five patients (26 calvarial grafts), a 1-year follow-up was performed (T2). RESULTS: A mean volume reduction of 16.2% at T1 (15 patients) and 19.2% at T2 (five patients) was observed. Bone density was high--about 1000 Hounsfield units--and did not change during the 1-year period. At the time of implantation, 41 transplants were classified as quality 1 bone and 10 as quality 2-3 bone. Grafting area and the technique used for grafting (inlay or onlay graft) did not affect the postoperative bone volume reduction. Generalized osteoporosis did not increase the resorption rate of calvarial transplants. CONCLUSION: Based on these findings, calvarial split bone grafts are a promising alternative for alveolar ridge reconstruction in dental implantology.
Resumo:
OBJECTIVE: To analyze the clinical outcome of horizontal ridge augmentation using autogenous block grafts covered with an organic bovine bone mineral (ABBM) and a bioabsorbable collagen membrane. MATERIAL AND METHODS: In 42 patients with severe horizontal bone atrophy, a staged approach was chosen for implant placement following horizontal ridge augmentation. A block graft was harvested from the symphysis or retromolar area, and secured to the recipient site with fixation screws. The width of the ridge was measured before and after horizontal ridge augmentation. The block graft was subsequently covered with ABBM and a collagen membrane. Following a tension-free primary wound closure and a mean healing period of 5.8 months, the sites were re-entered, and the crest width was re-assessed prior to implant placement. RESULTS: Fifty-eight sites were augmented, including 41 sites located in the anterior maxilla. The mean initial crest width measured 3.06 mm. At re-entry, the mean width of the ridge was 7.66 mm, with a calculated mean gain of horizontal bone thickness of 4.6 mm (range 2-7 mm). Only minor surface resorption of 0.36 mm was observed from augmentation to re-entry. CONCLUSIONS: The presented technique of ridge augmentation using autogenous block grafts with ABBM filler and collagen membrane coverage demonstrated successful horizontal ridge augmentation with high predictability. The surgical method has been further simplified by using a resorbable membrane. The hydrophilic membrane was easy to apply, and did not cause wound infection in the rare instance of membrane exposure.
Resumo:
OBJECTIVE: Lateral ridge augmentations are traditionally performed using autogenous bone grafts to support membranes for guided bone regeneration (GBR). The bone-harvesting procedure, however, is accompanied by considerable patient morbidity. AIM: The aim of the present study was to test whether or not resorbable membranes and bone substitutes will lead to successful horizontal ridge augmentation allowing implant installation under standard conditions. MATERIAL AND METHODS: Twelve patients in need of implant therapy participated in this study. They revealed bone deficits in the areas intended for implant placement. Soft tissue flaps were carefully raised and blocks or particles of deproteinized bovine bone mineral (DBBM) (Bio-Oss) were placed in the defect area. A collagenous membrane (Bio-Gide) was applied to cover the DBBM and was fixed to the surrounding bone using poly-lactic acid pins. The flaps were sutured to allow for healing by primary intention. RESULTS: All sites in the 12 patients healed uneventfully. No flap dehiscences and no exposures of membranes were observed. Nine to 10 months following augmentation surgery, flaps were raised in order to visualize the outcomes of the augmentation. An integration of the DBBM particles into the newly formed bone was consistently observed. Merely on the surface of the new bone, some pieces of the grafting material were only partly integrated into bone. However, these were not encapsulated by connective tissue but rather anchored into the newly regenerated bone. In all of the cases, but one, the bone volume following regeneration was adequate to place implants in a prosthetically ideal position and according to the standard protocol with complete bone coverage of the surface intended for osseointegration. Before the regenerative procedure, the average crestal bone width was 3.2 mm and to 6.9 mm at the time of implant placement. This difference was statistically significant (P<0.05, Wilcoxon's matched pairs signed-rank test). CONCLUSION: After a healing period of 9-10 months, the combination of DBBM and a collagen membrane is an effective treatment option for horizontal bone augmentation before implant placement.