16 resultados para Ria
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Neuropeptide Y (NPY) is abundantly expressed in the nervous system and acts on target cells through NPY receptors. The human adrenal cortex and adrenal tumors express NPY receptor subtype Y1, but its function is unknown. We studied Y1-mediated signaling, steroidogenesis and cell proliferation in human adrenal NCI-H295R cells. Radioactive ligand binding studies showed that H295R cells express Y1 receptor specifically. NPY treatment of H295R cells stimulated the MEK/ERK1/2 pathway, confirming that H295R cells express functional Y1 receptors. Studies of the effect of NPY and related peptide PYY on adrenal steroidogenesis revealed a decrease in 11-deoxycortisol production. RIA measurements of cortisol from cell culture medium confirmed this finding. Co-treatment with the Y1 antagonist BIBP2336 reversed the inhibitory effect of NPY on cortisol production proving specificity of this effect. At mRNA level, NPY decreased HSD3B2 and CYP21A2 expression. However NPY revealed no effect on cell proliferation. Our data show that NPY can directly regulate human adrenal cortisol production.
Resumo:
Melatonin is an important endocrine signal for darkness in mammals. Transcriptional activation of the arylalkylamine-N-acetyltransferase gene encoding for the penultimate enzyme in melatonin synthesis drives the daily rhythm of the hormone in the pineal gland of rodents. Rhythmic arylalkylamine-N-acetyltransferase expression is controlled by the cAMP-signal transduction pathway and involves the activation of ?-adrenergic receptors and the inducible cAMP early repressor. In addition, the rat arylalkylamine-N-acetyltransferase promoter contains an E-box element which can interact with clock proteins. Moreover, the pineal gland of mice shows a circadian rhythm in clock proteins such as the transcriptional repressor Period1, which has been shown to control rhythmic gene expression in a variety of tissues. However, the role of Period1 in the regulation of pineal melatonin synthesis is still unknown. Therefore, circadian rhythms in arylalkylamine-N-acetyltransferase, ?-adrenergic receptor, and inducible cAMP early repressor mRNA levels (real time PCR), arylalkylamine-N-acetyltransferase enzyme activity (radiometric assay) and melatonin concentration radio immuno assay (RIA) were analyzed in the pineal gland of mice with a targeted deletion of the Period1 gene (Per1-/-) and the corresponding wildtype. In Per1-/- the amplitude in arylalkylamine-N-acetyltransferase expression was significantly elevated as compared to wildtype. In contrast, ?-adrenergic receptor and inducible cAMP early repressor mRNA levels were not affected by the Period1-deficiency. This indicates that the molecular clockwork alters the amplitude of arylalkylamine-N-acetyltransferase expression. In vitro, pineal glands of Per1-/- mice showed a day night difference in arylalkylamine-N-acetyltransferase expression with high levels at night. This suggests that a deficient in Period1 elicits similar effects as the activation of the cAMP-signal transduction pathway in wildtype mice.
Resumo:
The hypothalamic-pituitary system controls homeostasis during feed energy reduction. In order to examine which pituitary proteins and hormone variants are potentially associated with metabolic adaptation, pituitary glands from ad libitum and energy restrictively fed dairy cows were characterized using RIA and 2-DE followed by MALDI-TOF-MS. We found 64 different spots of regulatory hormones: growth hormone (44), preprolactin (16), luteinizing hormone (LH) (1), thyrotropin (1), proopiomelanocortin (1) and its cleavage product lipotropin (1), but none of these did significantly differ between feeding groups. Quantification of total pituitary LH and prolactin concentrations by RIA confirmed the results obtained by proteome analysis. Also, feed energy restriction provoked increasing non-esterified fatty acid, decreasing prolactin, but unaltered glucose, LH and growth hormone plasma concentrations. Energy restriction decreased the expression of glial fibrillary acidic protein, triosephosphate isomerase, purine-rich element-binding protein A and elongation factor Tu, whereas it increased expression of proline synthetase co-transcribed homolog, peroxiredoxin III, beta-tubulin and annexin A5 which is involved in the hormone secretion process. Our results indicate that in response to feed energy restriction the pituitary reservoir of all posttranslationally modified hormone forms remains constant. Changing plasma hormone concentrations are likely attributed to a regulated releasing process from the gland into the blood.
Resumo:
The aim of the present study was to determine effects of lactation on basal LH and IGF-1 concentrations and on the LH response to a GnRH-analogue at different stages of the oestrous cycle in mares. A total of 17 cyclic Haflinger mares were included in the study. Experiments were performed on lactating mares in first postpartum oestrus, the subsequent early luteal phase, and second postpartum oestrus. Non-lactating mares were used in oestrus and early luteal phase. Blood samples were taken for 1 h at 15 min intervals. Mares were then injected with the GnRH-analogue buserelin (GnRHa; 5 microg i.v.) and blood samples were drawn every 15 min for further 2 h. LH in all samples and basal IGF-1-concentrations were determined by RIA. In lactating mares, basal LH concentrations during the early luteal phase tended to be lower (p = 0.07) and the LH response to GnRHa, calculated as area under the curve, was significantly less pronounced compared to non-lactating mares (p < 0.01). As well in lactating mares, the basal LH concentration between first early luteal phase and second oestrus differed significantly (p < 0.05) and the net response to GnRHa was significantly lower between first oestrus as well as second oestrus and first early luteal phase (p < 0.05) but not between first and second oestrous postpartum. Within the group of non-lactating mares, the LH response to GnRHa was as well significantly lower during oestrus than during early luteal phase (p < 0.01). IGF-1 concentrations differed neither between groups nor stages of the cycle within groups. In conclusion, basal and GnRHa-stimulated LH release in lactating mares is lower than in non-lactating mares. This difference, however, occurs only in the early luteal phase. In lactating mares, concentrations of LH appear adequate to allow ovulation to occur.
Resumo:
BACKGROUND: Congestive heart failure (CHF) is a major public health problem. The use of B-type natriuretic peptide (BNP) tests shows promising diagnostic accuracy. Herein, we summarize the evidence on the accuracy of BNP tests in the diagnosis of CHF and compare the performance of rapid enzyme-linked immunosorbent assay (ELISA) and standard radioimmunosorbent assay (RIA) tests. METHODS: We searched electronic databases and the reference lists of included studies, and we contacted experts. Data were extracted on the study population, the type of test used, and methods. Receiver operating characteristic (ROC) plots and summary ROC curves were produced and negative likelihood ratios pooled. Random-effect meta-analysis and metaregression were used to combine data and explore sources of between-study heterogeneity. RESULTS: Nineteen studies describing 22 patient populations (9 ELISA and 13 RIA) and 9093 patients were included. The diagnosis of CHF was verified by echocardiography, radionuclide scan, or echocardiography combined with clinical criteria. The pooled negative likelihood ratio overall from random-effect meta-analysis was 0.18 (95% confidence interval [CI], 0.13-0.23). It was lower for the ELISA test (0.12; 95% CI, 0.09-0.16) than for the RIA test (0.23; 95% CI, 0.16-0.32). For a pretest probability of 20%, which is typical for patients with suspected CHF in primary care, a negative result of the ELISA test would produce a posttest probability of 2.9%; a negative RIA test, a posttest probability of 5.4%. CONCLUSIONS: The use of BNP tests to rule out CHF in primary care settings could reduce demand for echocardiography. The advantages of rapid ELISA tests need to be balanced against their higher cost.
Resumo:
PURPOSE: The aim of this study was to evaluate [(99m)Tc]Demotate 2 ([(99m)Tc-N(4) (0-1),Asp(0),Tyr(3)]octreotate) as a candidate for in vivo imaging of sst(2)-positive tumours and to compare it with [(111)In]DOTA-tate ([(111)In-DOTA(0),Tyr(3)]octreotate). METHODS: Labelling of Demotate 2 with (99m)Tc was performed at room temperature using SnCl(2) as reductant in the presence of citrate at alkaline pH. Radiochemical analysis involved ITLC and HPLC methods. Peptide conjugate affinities for sst(2) were determined by receptor autoradiography on rat brain cortex sections using [DOTA(0),(125)I-Tyr(3)]octreotate as the radioligand. The affinity profile of Demotate 2 for human sst(1)-sst(5) was studied by receptor autoradiography in cell preparations using the universal somatostatin radioligand [(125)I][Leu(8),(D: )Trp(22),Tyr(25)]somatostatin-28. The internalisation rates of [(99m)Tc]Demotate 2 and [(111)In]DOTA-tate were compared in sst(2)-positive and -negative control cell lines. Biodistribution of radiopeptides was studied in male Lewis rats bearing CA20948 tumours. RESULTS: Peptide conjugates showed selectivity and a high affinity binding for sst(2) (Demotate 2 IC(50)=3.2 nM and DOTA-tate IC(50)=5.4 nM). [(99m)Tc]Demotate 2, like [(111)In]DOTA-tate, internalised rapidly in all sst(2)-positive cells tested, but not in sst(2)-negative control cells. After injection in CA20948 tumour-bearing rats both radiopeptides showed high and specific uptake in the sst(2)-positive organs and in the implanted tumour and rapid excretion from non-target tissues via the kidneys. CONCLUSION: [(99m)Tc]Demotate 2, similarly to the known sst(2)-targeting agent [(111)In]DOTA-tate, showed promising biological qualities for application in the scintigraphy of sst(2)-positive tumours.
Resumo:
BACKGROUND: In contrast to RIA, recently available ELISAs provide the potential for fully automated analysis of adiponectin. To date, studies reporting on the diagnostic characteristics of ELISAs and investigating on the relationship between ELISA- and RIA-based methods are rare. METHODS: Thus, we established and evaluated a fully automated platform (BEP 2000; Dade-Behring, Switzerland) for determination of adiponectin levels in serum by two different ELISA methods (competitive human adiponectin ELISA; high sensitivity human adiponectin sandwich ELISA; both Biovendor, Czech Republic). Further, as a reference method, we also employed a human adiponectin RIA (Linco Research, USA). Samples from 150 patients routinely presenting to our cardiology unit were tested. RESULTS: ELISA measurements could be accomplished in less than 3 h, measurement of RIA had a duration of 24 h. The ELISAs were evaluated for precision, analytical sensitivity and specificity, linearity on dilution and spiking recovery. In the investigated patients, type 2 diabetes, higher age and male gender were significantly associated with lower serum adiponectin concentrations. Correlations between the ELISA methods and the RIA were strong (competitive ELISA, r=0.82; sandwich ELISA, r=0.92; both p<0.001). However, Deming regression and Bland-Altman analysis indicated lack of agreement of the 3 methods preventing direct comparison of results. The equations of the regression lines are: Competitive ELISA=1.48 x RIA-0.88; High sensitivity sandwich ELISA=0.77 x RIA+1.01. CONCLUSIONS: Fully automated measurement of adiponectin by ELISA is feasible and substantially more rapid than RIA. The investigated ELISA test systems seem to exhibit analytical characteristics allowing for clinical application. In addition, there is a strong correlation between the ELISA methods and RIA. These findings might promote a more widespread use of adiponectin measurements in clinical research.
Resumo:
Growth and sexual development are closely interlinked in fish; however, no reports exist on potential effects of estrogen on the GH/IGF-I-axis in developing fish. We investigate whether estrogen exposure during early development affects growth and the IGF-I system, both at the systemic and tissue level. Tilapia were fed from 10 to 40 days post fertilization (DPF) with 17alpha-ethinylestradiol (EE(2)). At 50, 75, 90, and 165 DPF, length, weight, sex ratio, serum IGF-I (RIA), pituitary GH mRNA and IGF-I, and estrogen receptor alpha (ERalpha) mRNA in liver, gonads, brain, and gills (real-time PCR) were determined and the results correlated to those of in situ hybridization for IGF-I. Developmental exposure to EE(2) had persistent effects on sex ratio and growth. Serum IGF-I, hepatic IGF-I mRNA, and the number of IGF-I mRNA-containing hepatocytes were significantly decreased at 75 DPF, while liver ERalpha mRNA was significantly induced. At 75 DPF, a transient decline of IGF-I mRNA and a largely reduced number of IGF-I mRNA-containing neurons were observed in the female brain. In both sexes, pituitary GH mRNA was significantly suppressed. A transient downregulation of IGF-I mRNA occurred in ovaries (75 DPF) and testes (90 DPF). In agreement, in situ hybridization revealed less IGF-I mRNA signals in granulosa and germ cells. Our results show for the first time that developmental estrogen treatment impairs GH/IGF-I expression in fish, and that the effects persist. These long-lasting effects both seem to be exerted indirectly via inhibition of pituitary GH and directly by suppression of local IGF-I in organ-specific cells.
Resumo:
HIT cells have been widely used to study synthesis and secretion of insulin. It has been assumed that this cell line secretes no other islet hormones. To ascertain whether HIT cells synthesize, secrete, and degrade glucagon, we examined cell extracts for this peptide and compared secretion and degradation of glucagon and insulin during stimulation of the cells by arginine. Glucagon levels in acid extracts of HIT cells were found to be 0.72 +/- 0.15 pmol/mg protein. Both glucagon and insulin were maximally stimulated in a glucagon/insulin molar ratio of 0.029 by arginine concentrations of 25-50 nM, and the concentration of arginine that provided half-maximum responses for both hormones was approximately 3 mM. Diminution of arginine-induced glucagon secretion was caused by somatostatin, a physiological inhibitor of pancreatic islet alpha-cell function. HPLC was used to authenticate the glucagon levels stimulated by arginine for 60 min and measured by RIA. Thirty-six percent of immunoreactive glucagon was found in the fractions representing authentic glucagon, whereas the remaining 64% eluted earlier. Experiments examining the fate of radiolabeled glucagon exposed to HIT cells revealed time-dependent degradation of the radioisotope to earlier eluting forms, which accounted for approximately 50% of the radioactivity by 60 min and was complete by 18 h, indicating that the early peak detected by RIA represented a metabolite of glucagon. Radioisotopic insulin was degraded more slowly with an apparent half-life of approximately 36 h. We conclude that HIT cells are not only able to synthesize, secrete, and degrade insulin, but also much smaller amounts of glucagon.
Resumo:
BACKGROUND: Papillary or follicular thyroid carcinomas exhibit a relatively benign course. Hence, long-term follow-up studies with well-defined disease stages and treatment details are needed to evaluate treatment strategies. METHODS: Patients who underwent complete resection of well-differentiated thyroid carcinoma (WDTC) confined to the thyroid gland between 1972 and 1990 identified from a prospective database were assessed. Follow-up was performed by interview, review of patient charts, and analysis of the Death Registry. Primary endpoints were overall survival (OS) and disease-specific survival (DSS). Review of histology was performed and extent of thyroid resection, postoperative therapy, and recognized prognostic factors but not lymphadenectomy were evaluated. RESULTS: Of 2,867 patients, 213 had complete resection of WDTC confined to the thyroid gland. Follow-up was completed in 166 patients with median age 54.2 (range, 20-85) years, and median follow-up of 27.2 (range, 15.6-34.5) years. The 10- and 20-year OS was 71 and 55%, respectively. DSS at 10 and 20 years was 81 and 69%, respectively, and correlated with age, histology, tumor size, radio-iodide ablation (RIA), and external beam irradiation (EBR) treatment. No patient died of WDTC more than 18 years after resection. Total or near-total thyroidectomy without lymphadenectomy was not superior to partial thyroidectomy. In multivariate analysis for DSS, age was the dominant factor, which correlated with histology. CONCLUSION: After a median follow-up of 27 years, about one-third of patients died of WDTC. Age, histology and postoperative therapy but not extent of thyroid resection determined DSS.
Resumo:
BACKGROUND The study was designed to compare the effect of in vitro FSH stimulation on the hormone production and gene expression profile of granulosa cells (GCs) isolated from single naturally matured follicles obtained from natural cycle in vitro fertilization (NC-IVF) with granulosa cells obtained from conventional gonadotropin-stimulated IVF (c-IVF). METHODS Lutein granulosa cells from the dominant follicle were isolated and cultured in absence or presence of recombinant FSH. The cultures were run for 48 h and six days. Messenger RNA (mRNA) expressions of anti-Müllerian hormone (AMH) and FSH receptor were measured by quantitative polymerase chain reaction (qPCR). AMH protein and progesterone concentration (P4) in cultured supernatant were measured by ELISA and RIA. RESULTS Our results showed that the mRNA expression of AMH was significantly higher in GCs from NC- than from c-IVF on day 6 after treatment with FSH (1 IU/mL). The FSH stimulation increased the concentration of AMH in the culture supernatant of GCs from NC-IVF compared with cells from c-IVF. In the culture medium, the AMH level was correlated significantly and positively to progesterone concentration. CONCLUSIONS Differences in the levels of AMH and progesterone released into the medium by cultured GC as well as in AMH gene expression were observed between GCs obtained under natural and stimulated IVF protocols. The results suggest that artificial gonadotropin stimulation may have an effect on the intra-follicular metabolism. A significant positive correlation between AMH and progesterone may suggest progesterone as a factor influencing AMH secretion.
Resumo:
Embryonic-maternal interaction from the earliest stages of gestation has a key, sustained role in neurologic development, persisting into adulthood. Early adverse events may be detrimental in adulthood. Protective factors present during gestation could significantly impact post-natal therapy. The role of PreImplantation Factor (PIF) within this context is herein examined. Secreted by viable early embryos, PIF establishes effective embryonic-maternal communication and exerts essential trophic and protective roles by reducing oxidative stress and protein misfolding and by blunting the nocive let-7 microRNA related pathway. PIF's effects on systemic immunity lead to comprehensive immune modulation, not immune suppression. We examine PIF's role in protecting embryos from adverse maternal environment, which can lead to neurological disorders that may only manifest post-nataly: Synthetic PIF successfully translates endogenous PIF features in both pregnant and non-pregnant clinically relevant models. Specifically PIF has neuroprotective effects in neonatal prematurity. In adult relapsing-remitting neuroinflammation, PIF reverses advanced paralysis while promoting neurogenesis. PIF reversed Mycobacterium smegmatis induced brain infection. In graft-vs.-host disease, PIF reduced skin ulceration, liver inflammation and colon ulceration while maintaining beneficial anti-cancer, graft-vs.-leukemia effect. Clinical-grade PIF has high-safety profile even at supraphysiological doses. The FDA awarded Fast-Track designation, and university-sponsored clinical trials for autoimmune disorder are ongoing. Altogether, PIF properties point to its determining regulatory role in immunity, inflammation and transplant acceptance. Specific plans for using PIF for the treatment of complex neurological disorders (ie. traumatic brain injury, progressive paralysis), including neuroprotection from newborn to adult, are presented.