10 resultados para Revolutions
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In order to determine a stress response, two groups of twenty male golden hamsters were either exposed to a ferret or handled by a human. The hamsters' body temperature and running wheel activity were measured as stress correlates. Half of the hamsters' cages were equipped with a functional running wheel to determine whether the presence of a running wheel might reduce stress. Exposure to the ferret was followed by a significant increase in body temperature and running wheel revolutions: however, running wheel activity did not change after handling. Body temperature increased less after handling in hamsters living in a cage with a functional running wheel than in those with a non-revolving running wheel. This suggests that hamsters with a functional running wheel reacted less strongly to acute stress caused by handling. On the other hand, temperature increase after the exposure to a ferret was not affected by the presence of a running wheel. Both exposure to a ferret and handling caused stress in golden hamsters, as demonstrated by an increase in body temperature (emotional fever). Stress caused by handling was much milder than stress caused by the ferret. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Time series of geocenter coordinates were determined with data of two global navigation satellite systems (GNSSs), namely the U.S. GPS (Global Positioning System) and the Russian GLONASS (Global’naya Nawigatsionnaya Sputnikowaya Sistema). The data was recorded in the years 2008–2011 by a global network of 92 permanently observing GPS/GLONASS receivers. Two types of daily solutions were generated independently for each GNSS, one including the estimation of geocenter coordinates and one without these parameters. A fair agreement for GPS and GLONASS was found in the geocenter x- and y-coordinate series. Our tests, however, clearly reveal artifacts in the z-component determined with the GLONASS data. Large periodic excursions in the GLONASS geocenter z-coordinates of about 40 cm peak-to-peak are related to the maximum elevation angles of the Sun above/below the orbital planes of the satellite system and thus have a period of about 4 months (third of a year). A detailed analysis revealed that the artifacts are almost uniquely governed by the differences of the estimates of direct solar radiation pressure (SRP) in the two solution series (with and without geocenter estimation). A simple formula is derived, describing the relation between the geocenter z-coordinate and the corresponding parameter of the SRP. The effect can be explained by first-order perturbation theory of celestial mechanics. The theory also predicts a heavy impact on the GNSS-derived geocenter if once-per-revolution SRP parameters are estimated in the direction of the satellite’s solar panel axis. Specific experiments using GPS observations revealed that this is indeed the case. Although the main focus of this article is on GNSS, the theory developed is applicable to all satellite observing techniques. We applied the theory to satellite laser ranging (SLR) solutions using LAGEOS. It turns out that the correlation between geocenter and SRP parameters is not a critical issue for the SLR solutions. The reasons are threefold: The direct SRP is about a factor of 30–40 smaller for typical geodetic SLR satellites than for GNSS satellites, allowing it in most cases to not solve for SRP parameters (ruling out the correlation between these parameters and the geocenter coordinates); the orbital arc length of 7 days (which is typically used in SLR analysis) contains more than 50 revolutions of the LAGEOS satellites as compared to about two revolutions of GNSS satellites for the daily arcs used in GNSS analysis; the orbit geometry is not as critical for LAGEOS as for GNSS satellites, because the elevation angle of the Sun w.r.t. the orbital plane is usually significantly changing over 7 days.
Resumo:
The time variable Earth’s gravity field provides the information about mass transport within the system Earth, i.e., the relationship of mass transport between atmosphere, oceans, and land hydrology. We recover the low-degree parameters of the time variable gravity field using microwave observations from GPS and GLONASS satellites and from SLR data to five geodetic satellites, namely LAGEOS-1/2, Starlette, Stella, and AJISAI. GPS satellites are particularly sensitive to specific coefficients of the Earth's gravity field, because of the deep 2:1 orbital resonance with Earth rotation (two revolutions of the GPS satellites per sidereal day). The resonant coefficients cause, among other, a “secular” drift (actually periodic variations of very long periods) of the semi-major axes of up to 5.3 m/day of GPS satellites. We processed 10 years of GPS and GLONASS data using the standard orbit models from the Center of Orbit Determination in Europe (CODE) with a simultaneous estimation of the Earth gravity field coefficients and other parameters, e.g., satellite orbit parameters, station coordinates, Earth rotation parameters, troposphere delays, etc. The weekly GNSS gravity solutions up to degree and order 4/4 are compared to the weekly SLR gravity field solutions. The SLR-derived geopotential coefficients are compared to monthly GRACE and CHAMP results.
Resumo:
In this book, leading historians of the French, Batavian, Helvetic, Cisalpine, and Neapolitan revolutions bridge the gap between the historiographies of the so-called Sister Republics and explore political culture as a set of discourses or political practices. Parliamentary practices, the comparability of "universal" political concepts, late-eighteenth-century Republicanism, the relationship between press and politics, and the interaction between the Sister Republics and France are all examined from a comparative, transnational perspective.
Resumo:
After the collapse of the Soviet Union and Yugoslavia, a number of actors started to engage in the power struggle for the opportunities to shape the new order in successive nation-states. In Serbia and Georgia historically hegemonic Orthodox Christian churches were among the firsts in the frontlines for political and economic power. More than a decade has passed since the so-called Coloured Revolutions in Georgia and Serbia, and the Orthodox churches still remain participants of an ongoing socio-political transition of these states. The revival of public role of religion appeared temporary in Serbia followed by a gradual decline of an influence of the Orthodox Church over political life and legal process. However, in Georgia the public and political role of religion increased rather than declined albeit changed shape. Examining the degree to which the two Orthodox churches can influence the political agenda in Serbia and Georgia, the paper attempts to understand how church-State relations work in practice. By bringing rich empirical data from the field (70 interviews with (arch)bishops, priests and religious clerics in Georgia and Serbia added to field observations), the paper reflects on the themes under which the two Orthodox churches mobilize public protest in Serbia and Georgia. The paper further looks at varying State responses and their broader implication for church-state problematique.