3 resultados para Reusing
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The promise of search-driven development is that developers will save time and resources by reusing external code in their local projects. To efficiently integrate this code, users must be able to trust it, thus trustability of code search results is just as important as their relevance. In this paper, we introduce a trustability metric to help users assess the quality of code search results and therefore ease the cost-benefit analysis they undertake trying to find suitable integration candidates. The proposed trustability metric incorporates both user votes and cross-project activity of developers to calculate a "karma" value for each developer. Through the karma value of all its developers a project is ranked on a trustability scale. We present JBENDER, a proof-of-concept code search engine which implements our trustability metric and we discuss preliminary results from an evaluation of the prototype.
Resumo:
Software repositories have been getting a lot of attention from researchers in recent years. In order to analyze software repositories, it is necessary to first extract raw data from the version control and problem tracking systems. This poses two challenges: (1) extraction requires a non-trivial effort, and (2) the results depend on the heuristics used during extraction. These challenges burden researchers that are new to the community and make it difficult to benchmark software repository mining since it is almost impossible to reproduce experiments done by another team. In this paper we present the TA-RE corpus. TA-RE collects extracted data from software repositories in order to build a collection of projects that will simplify extraction process. Additionally the collection can be used for benchmarking. As the first step we propose an exchange language capable of making sharing and reusing data as simple as possible.
Resumo:
Data visualization is the process of representing data as pictures to support reasoning about the underlying data. For the interpretation to be as easy as possible, we need to be as close as possible to the original data. As most visualization tools have an internal meta-model, which is different from the one for the presented data, they usually need to duplicate the original data to conform to their meta-model. This leads to an increase in the resources needed, increase which is not always justified. In this work we argue for the need of having an engine that is as close as possible to the data and we present our solution of moving the visualization tool to the data, instead of moving the data to the visualization tool. Our solution also emphasizes the necessity of reusing basic blocks to express complex visualizations and allowing the programmer to script the visualization using his preferred tools, rather than a third party format. As a validation of the expressiveness of our framework, we show how we express several already published visualizations and describe the pros and cons of the approach.