118 resultados para Retinal pigment epithelium
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Stem cell regeneration of damaged tissue has recently been reported in many different organs. Since the loss of retinal pigment epithelium (RPE) in the eye is associated with a major cause of visual loss - specifically, age-related macular degeneration - we investigated whether hematopoietic stem cells (HSC) given systemically can home to the damaged subretinal space and express markers of RPE lineage. Green fluorescent protein (GFP) cells of bone marrow origin were used in a sodium iodate (NaIO(3)) model of RPE damage in the mouse. The optimal time for adoptive transfer of bone marrow-derived stem cells relative to the time of injury and the optimal cell type [whole bone marrow, mobilized peripheral blood, HSC, facilitating cells (FC)] were determined by counting the number of GFP(+) cells in whole eye flat mounts. Immunocytochemistry was performed to identify the bone marrow origin of the cells in the RPE using antibodies for CD45, Sca-1, and c-kit, as well as the expression of the RPE-specific marker, RPE-65. The time at which bone marrow-derived cells were adoptively transferred relative to the time of NaIO(3) injection did not significantly influence the number of cells that homed to the subretinal space. At both one and two weeks after intravenous (i.v.) injection, GFP(+) cells of bone marrow origin were observed in the damaged subretinal space, at sites of RPE loss, but not in the normal subretinal space. The combined transplantation of HSC+FC cells appeared to favor the survival of the homed stem cells at two weeks, and RPE-65 was expressed by adoptively transferred HSC by four weeks. We have shown that systemically injected HSC homed to the subretinal space in the presence of RPE damage and that FC promoted survival of these cells. Furthermore, the RPE-specific marker RPE-65 was expressed on adoptively transferred HSC in the denuded areas.
Resumo:
PURPOSE: To characterize chemoattractants expressed by the retinal pigment epithelium (RPE) after sodium iodate (NaIO3)-induced damage and to investigate whether ocular-committed stem cells preexist in the bone marrow (BM) and migrate in response to the chemoattractive signals expressed by the damaged RPE. METHODS: C57/BL6 mice were treated with a single intravenous injection of NaIO3 (50 mg/kg) to create RPE damage. At different time points real-time RT-PCR, ELISA, and immunohistochemistry were used to identify chemoattractants secreted in the subretinal space. Conditioned medium from NaIO3-treated mouse RPE was used in an in vitro assay to assess chemotaxis of stem cell antigen-1 positive (Sca-1+) BM mononuclear cells (MNCs). The expression of early ocular markers (MITF, Pax-6, Six-3, Otx) in migrated cells and in MNCs isolated from granulocyte colony-stimulating factor (G-CSF) and Flt3 ligand (FL)-mobilized and nonmobilized peripheral blood (PB) was analyzed by real-time RT-PCR. RESULTS: mRNA for stromal cell-derived factor-1 (SDF-1), C3, hepatocyte growth factor (HGF), and leukemia inhibitory factor (LIF) was significantly increased, and higher SDF-1 and C3 protein secretion from the RPE was found after NaIO3 treatment. A higher number of BMMNCs expressing early ocular markers migrated to conditioned medium from damaged retina. There was also increased expression of early ocular markers in PBMNCs after mobilization. CONCLUSIONS: Damaged RPE secretes cytokines that have been shown to serve as chemoattractants for BM-derived stem cells (BMSCs). Retina-committed stem cells appear to reside in the BM and can be mobilized into the PB by G-CSF and FL. These stem cells may have the potential to serve as an endogenous source for tissue regeneration after RPE damage.
Resumo:
We characterized changes in the visual behavior of mice in which a loss of the retinal pigment epithelium (RPE) was experimentally induced with intravenous (i.v.) administration of sodium iodate (NaIO3). We compared and correlated these changes with alterations in neural retinal structure and function. RPE loss was induced in 4-6 week old male C57BL/6 mice with an i.v. injection of 1% NaIO3 at three concentrations: 35, 50, or 70 mg/kg. At 1, 3, 7, 14, 21, and 28 days (d) as well as 6 months post injection (PI) a behavioral test was performed in previously trained mice to evaluate visual function. Eye morphology was then assessed for changes in both the RPE and neural retina. NaIO3-induced RPE degeneration was both dose and PI time dependent. Our low dose showed no effects, while our high dose caused the most damage, as did longer PI times at our intermediate dose. Using the intermediate dose, no changes were detectable in either visual behavior or retinal morphology at 1 d PI. However, at 3 d PI visual behavior became abnormal and patchy RPE cell loss was observed. From 7 d PI onward, changes in retinal morphology and visual behavior became more severe. At 6 months PI, no recovery was seen in any of these measures in mice administered the intermediate dose. These results show that NaIO3 dosage and/or time PI can be varied to produce different, yet permanent deficits in retinal morphology and visual function. Thus, this approach should provide a unique system in which the onset and severity of RPE damage, and its consequences can be manipulated. As such, it should be useful in the assessment of rescue or mitigating effects of retinal or stem cell transplantation on visual function.
Resumo:
PURPOSE: The aim of the present study was to investigate whether bone marrow-derived cells (BMCs) can be induced to express retinal pigment epithelial (RPE) cell markers in vitro and can home to the site of RPE damage after mobilization and express markers of RPE lineage in vivo. METHODS: Adult RPE cells were cocultured with green fluorescence protein (GFP)-labeled stem cell antigen-1 positive (Sca-1(+)) BMCs for 1, 2, and 3 weeks. Cell morphology and expression of RPE-specific markers and markers for other retinal cell types were studied. Using an animal model of sodium iodate (NaIO(3))-induced RPE degeneration, BMCs were mobilized into the peripheral circulation by granulocyte-colony stimulating factor, flt3 ligand, or both. Immunocytochemistry was used to identify and characterize BMCs in the subretinal space in C57BL/6 wild-type (wt) mice and GFP chimeric mice. RESULTS: In vitro, BMCs changed from round to flattened, polygonal cells and expressed cytokeratin, RPE65, and microphthalmia transcription factor (MITF) when cocultured in direct cell-cell contact with RPE. In vivo, BMCs were identified in the subretinal space as Sca-1(+) or c-kit(+) cells. They were also double labeled for GFP and RPE65 or MITF. These cells formed a monolayer on the Bruch membrane in focal areas of RPE damage. CONCLUSIONS: Thus, it appears that BMCs, when mobilized into the peripheral circulation, can home to focal areas of RPE damage and express cell markers of RPE lineage. The use of endogenous BMCs to replace damaged retinal tissue opens new possibilities for cell replacement therapy in ophthalmology.
Resumo:
PURPOSE: To correlate damage to the retinal pigment epithelium (RPE) with decreased visual function after the systemic administration of sodium iodate (NaIO(3)). METHODS: Damage was produced in mice by injection of 15, 25, or 35 mg/kg NaIO(3). Visual function was assessed with the cued water maze (WM) behavioral test and the optokinetic reflex (OKR) measurement at different times after injection. Autofluorescence in whole eye flatmounts was quantified, and hematoxylin and eosin staining of paraffin sections was performed to assess changes in the outer retina. RESULTS: After 15 mg/kg NaIO(3), cued WM test results were normal, whereas OKR measurements were significantly decreased at all times. Focal RPE loss began on day 21, but no significant damage to the outer nuclear layer was observed. After 25 mg/kg NaIO(3), the cued WM test was transitionally reduced and the OKR measurement again decreased at all times. Large areas of RPE loss occurred on day 14 with a reduced outer nuclear layer on the same day. With 35 mg/kg NaIO(3), the cued WM test was reduced beginning on day 14 with complete obliteration of the OKR beginning on day 3, large areas of RPE loss on the same day, and a reduced outer nuclear layer on day 7. CONCLUSIONS: Stable, patchy RPE loss was observed with a low concentration of NaIO(3). The OKR measurement showed changes in visual function earlier than the cued WM test and before histologic findings were observed.
Resumo:
The goal of this study was to assess the in vitro differentiation capacity of human bone marrow-derived stem cells (hBMSCs) along retinal lineages. Mononuclear cells (MNC) were isolated from bone marrow (BM) and mobilized peripheral blood (mPB) using Ficoll-Paque density gradient centrifugation, and were sorted by magnetic-activated cell sorting (MACS) for specific stem cell subsets (CD34(+)CD38(+)/CD34(+)CD38(-)). These cells were then co-cultured on human retinal pigment epithelial cells (hRPE) for 7 days. The expression of stem cell, neural and retina-specific markers was examined by immunostaining, and the gene expression profiles were assessed after FACS separation of the co-cultured hBMSCs by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, in vitro functionality of the differentiated cells was analyzed by quantifying phagocytosis of CY5-labeled photoreceptor outer segments (POS). After 7 days of co-culture, hBMSCs adopted an elongated epithelial-like morphology and expressed RPE-specific markers, such as RPE65 and bestrophin. In addition, these differentiated cells were able to phagocytose OS, one of the main characteristics of native RPE cells. Our data demonstrated that human CD34(+)CD38(-) hBMSC may differentiate towards an RPE-like cell type in vitro and could become a new type of autologous donor cell for regenerative therapy in retinal degenerative diseases.
Resumo:
PURPOSE To assess the effect of a bimonthly treatment regimen with intravitreal aflibercept on retinal fluid and pigment epithelial detachment (PED) in patients with neovascular age-related macular degeneration (AMD). METHODS Twenty-six treatment-naive eyes of 26 patients with choroidal neovascularisation secondary to AMD were included. The patients received three initial monthly (mean 30 days) intravitreal injections of aflibercept followed by a bimonthly (mean 62 days) fixed regimen for a total of 1 year. Best-corrected visual acuity (BCVA) and optical coherence tomography (OCT) measurements were recorded at monthly intervals. In addition, the presence of intraretinal fluid (IRF) or subretinal fluid (SRF) or a combination of both as well as serous and fibrovascular PEDs were assessed. RESULTS The mean patient age was 80 years (range 54-93). There were 14 male and 12 female patients. The mean gain in BCVA at 1 year was 9.3 letters (SEM ±3) with a mean reduction of the central retinal thickness of 154 µm (SEM ±50). After 3 monthly injections of aflibercept, there was resolution of IRF and SRF in 80% of the treated eyes; the amount of fluid increased at months 4, 6 and 8 with troughs in between. Whereas fibrovascular PEDs remained stable after the loading phase, serous PEDs displayed a seesaw pattern. Patients without retinal pigment epithelium (RPE) atrophy at the end of the 1-year period had significantly better BCVA compared to patients with RPE atrophy (p = 0.03). CONCLUSION Despite significant overall BCVA gain, bimonthly intervals seem insufficient to maintain the morphological improvements after the initial loading dose with intravitreal aflibercept.
Resumo:
Retinal degenerative diseases that target photoreceptors or the adjacent retinal pigment epithelium (RPE) affect millions of people worldwide. Retinal degeneration (RD) is found in many different forms of retinal diseases including retinitis pigmentosa (RP), age-related macular degeneration (AMD), diabetic retinopathy, cataracts, and glaucoma. Effective treatment for retinal degeneration has been widely investigated. Gene-replacement therapy has been shown to improve visual function in inherited retinal disease. However, this treatment was less effective with advanced disease. Stem cell-based therapy is being pursued as a potential alternative approach in the treatment of retinal degenerative diseases. In this review, we will focus on stem cell-based therapies in the pipeline and summarize progress in treatment of retinal degenerative disease.
Resumo:
A 39-year-old female with elevated serum cobalt levels from her bilateral hip prostheses presented with a 3-week history of blurred vision in her left eye. Optical coherence tomography revealed patchy degeneration of the photoreceptor-retinal pigment epithelium (RPE) complex. The lesions were hypofluorescent on indocyanine green angiography. We postulate that this is a case of implant-related chorio-retinal cobalt toxicity.
Resumo:
The heparin-binding epidermal growth factor-like growth factor (HB-EGF) has been implicated in wound-healing processes of various tissues. However, it is not known whether HB-EGF may represent a factor implicated in overstimulated wound-healing processes of the retina during proliferative retinopathies. Therefore, we investigated whether human retinal pigment epithelial (RPE) cells, which are crucially involved in proliferative retinopathies, express and respond to HB-EGF. RPE cells express mRNAs for various members of the EGF-related growth factor family, among them for HB-EGF, as well as for the EGF receptors ErbB1, -2, -3, and -4. The gene expression of HB-EGF is stimulated in the presence of transforming and basic fibroblast growth factors and by oxidative stress and is suppressed during chemical hypoxia. Exogenous HB-EGF stimulates proliferation and migration of RPE cells and the gene and protein expression of the vascular endothelial growth factor (VEGF). HB-EGF activates at least three signal transduction pathways in RPE cells including the extracellular signal-regulated kinases (involved in the proliferation-stimulating action of HB-EGF), p38 (mediates the effects on chemotaxis and secretion of VEGF), and the phosphatidylinositol-3 kinase (necessary for the stimulation of chemotaxis). In epiretinal membranes of patients with proliferative retinopathies, HB-EGF immunoreactivity was partially colocalized with the RPE cell marker, cytokeratins; this observation suggests that RPE cell-derived HB-EGF may represent one factor that drives the uncontrolled wound-healing process of the retina. The stimulating effect on the secretion of VEGF may suggest that HB-EGF is also implicated in the pathological angiogenesis of the retina.
Resumo:
BACKGROUND: Due to the high risk of RPE tears PDT is usually not performed in eyes with serous RPE detachments (sRPED). For this reason this subform of exudative AMD was so far untreatable. PATIENTS AND METHODS: We report on a prospective uncontrolled observational case series. 20 eyes of 20 patients with subfoveal sRPED demonstrated by OCT were treated between June 2005 and April 2006 with intravitreal triamcinolone acetonide (IVTA). In 15 cases there was a primary sRPED, in 5 cases it had developed after one or more sessions of photodynamic therapy with Visudyne. RESULTS: There was a trend for better average visual acuity in the group with primary sRPED from 0.73 logMAR (0.19 Snellen equivalent) at baseline (n = 15) to 0.68 logMAR (0.21 Snellen) after one month (n = 15) (p = 0.19) and to 0.60 logMAR (0.25 Snellen) after three months (n = 14) (p = 0.41). The maximal height of sRPED decreased to an average of 35.3 % after one month (n = 15) and increased again to 56.9 % after 3 months (n = 14). One patient was lost to follow-up. In the group of eyes with sRPED after PDT, one eye developed an RPE tear with severe vision loss two weeks after IVTA. In the remaining four eyes average visual acuity improved from 0.90 logMAR (0.13 Snellen) at baseline to 0.73 logMAR (0.19 Snellen) after one month and to 0.80 logMAR (0.16 Snellen) after 3 months. Complete resolution of sRPED was observed in 8/20 eyes (4/5 eyes with sRPED after PDT and 4/15 eyes with primary sRPED). CONCLUSIONS: IVTA seems to be a therapeutic option in otherwise untreatable eyes with sRPED.
Resumo:
PURPOSE: To report a large, consanguineous Algerian family affected with Leber congenital amaurosis (LCA) or early-onset retinal degeneration (EORD). METHODS: All accessible family members underwent a complete ophthalmic examination, and blood was obtained for DNA extraction. Homozygosity mapping was performed with markers flanking 12 loci associated with LCA. The 15 exons of TULP1 were sequenced. RESULTS: Seven of 30 examined family members were affected, including five with EORD and two with LCA. All patients had nystagmus, hemeralopia, mild myopia, and low visual acuity without photophobia. Fundus features were variable among EORD patients: typical spicular retinitis pigmentosa or clumped pigmented retinopathy with age-dependent macular involvement. A salt-and-pepper retinopathy with midperipheral retinal pigment epithelium (RPE) atrophy was present in the older patients with LCA, whereas the retina appeared virtually normal in the younger ones. Both scotopic and photopic electroretinograms were nondetectable. Fundus imaging revealed a perifoveal ring of increased fundus autofluorescence (FAF) in the proband, and optical coherence tomography disclosed a thinned retina, mainly due to photoreceptor loss. Linkage analysis identified a region of homozygosity on chromosome 6, region p21.3, and mutation screening revealed a novel 6-base in-frame duplication, in the TULP1 gene. CONCLUSIONS: Mutation in the TULP1 gene is a rare cause of LCA/EORD, with only 14 mutations reported so far. The observed intrafamilial phenotypic variability could be attributed to disease progression or possibly modifier alleles. This study provides the first description of FAF and quantitative reflectivity profiles in TULP1-related retinopathy.
Resumo:
OBJECTIVE: To describe the use of stem cells (SCs) for regeneration of retinal degenerations. Regenerative medicine intends to provide therapies for severe injuries or chronic diseases where endogenous repair does not sufficiently restore the tissue. Pluripotent SCs, with their capacity to give rise to specialized cells, are the most promising candidates for clinical application. Despite encouraging results, a combination with up-to-date tissue engineering might be critical for ultimate success. DESIGN: The focus is on the use of SCs for regeneration of retinal degenerations. Cell populations include embryonic, neural, and bone marrow-derived SCs, and engineered grafts will also be described. RESULTS: Experimental approaches have successfully replaced damaged photoreceptors and retinal pigment epithelium using endogenous and exogenous SCs. CONCLUSIONS: Stem cells have the potential to significantly impact retinal regeneration. A combination with bioengineering may bear even greater promise. However, ethical and scientific issues have yet to be solved.