74 resultados para Reticulum endoplasmique

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endocrine and neuroendocrine cells differ from cells which rapidly release all their secreted proteins in that they store some secretory proteins in concentrated forms in secretory granules to be rapidly released when cells are stimulated. Protein aggregation is considered as the first step in the secretory granule biosynthesis and, at least in the case of prolactin and growth hormone, greatly depends on zinc ions that facilitate this process. Hence, regulation of cellular zinc transport especially that within the regulated secretory pathway is of importance to understand. Various zinc transporters of Slc30a/ZnT and Slc39a/Zip families have been reported to fulfil this role and to participate in fine tuning of zinc transport in and out of the endoplasmic reticulum, Golgi complex and secretory granules, the main cellular compartments of the regulated secretory pathway. In this review, we will focus on the role of zinc in the formation of hormone-containing secretory granules with special emphasis on conditions required for growth hormone dimerization/aggregation. In addition, we highlight the role of zinc transporters that govern the process of zinc homeostasis in the regulated hormone secretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ca(2+) content of the sarcoplasmic reticulum (SR) of cardiac myocytes is thought to play a role in the regulation and termination of SR Ca(2+) release through the ryanodine receptors (RyRs). Experimentally altering the amount of Ca(2+) within the SR with the membrane-permeant low affinity Ca(2+) chelator TPEN could improve our understanding of the mechanism(s) by which SR Ca(2+) content and SR Ca(2+) depletion can influence Ca(2+) release sensitivity and termination. We applied laser-scanning confocal microscopy to examine SR Ca(2+) release in freshly isolated ventricular myocytes loaded with fluo-3, while simultaneously recording membrane currents using the whole-cell patch-clamp technique. Following application of TPEN, local spontaneous Ca(2+) releases increased in frequency and developed into cell-wide Ca(2+) waves. SR Ca(2+) load after TPEN application was found to be reduced to about 60% of control. Isolated cardiac RyRs reconstituted into lipid bilayers exhibited a two-fold increase of their open probability. At the low concentration used (20-40muM), TPEN did not significantly inhibit the SR-Ca(2+)-ATPase in SR vesicles. These results indicate that TPEN, traditionally used as a low affinity Ca(2+) chelator in intracellular Ca(2+) stores, may also act directly on the RyRs inducing an increase in their open probability. This in turn results in an increased Ca(2+) leak from the SR leading to its Ca(2+) depletion. Lowering of SR Ca(2+) content may be a mechanism underlying the recently reported cardioprotective and antiarrhythmic features of TPEN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

11Beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is essential for the local activation of glucocorticoid receptors (GR). Unlike unliganded cytoplasmic GR, 11beta-HSD1 is an endoplasmic reticulum (ER)-membrane protein with lumenal orientation. Cortisone might gain direct access to 11beta-HSD1 by free diffusion across membranes, indirectly via intracellular binding proteins or, alternatively, by insertion into membranes. Membranous cortisol, formed by 11beta-HSD1 at the ER-lumenal side, might then activate cytoplasmic GR or bind to ER-lumenal secretory proteins. Compartmentalization of 11beta-HSD1 is important for its regulation by hexose-6-phosphate dehydrogenase (H6PDH), which regenerates cofactor NADPH in the ER lumen and stimulates oxoreductase activity. ER-lumenal orientation of 11beta-HSD1 is also essential for the metabolism of the alternative substrate 7-ketocholesterol (7KC), a major cholesterol oxidation product found in atherosclerotic plaques and taken up from processed cholesterol-rich food. An 11beta-HSD1 mutant adopting cytoplasmic orientation efficiently catalyzed the oxoreduction of cortisone but not 7KC, indicating access to cortisone from both sides of the ER-membrane but to 7KC only from the lumenal side. These aspects may be relevant for understanding the physiological role of 11beta-HSD1 and for developing therapeutic interventions to control glucocorticoid reactivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ca(2+)-binding proteins parvalbumin (PV) and calbindin D-28k (CB) are key players in the intracellular Ca(2+)-buffering in specific cells including neurons and have profound effects on spatiotemporal aspects of Ca(2+) transients. The previously observed increase in mitochondrial volume density in fast-twitch muscle of PV-/- mice is viewed as a specific compensation mechanism to maintain Ca(2+) homeostasis. Since cerebellar Purkinje cells (PC) are characterized by high expression levels of the Ca(2+) buffers PV and CB, the question was raised, whether homeostatic mechanisms are induced in PC lacking these buffers. Mitochondrial volume density, i.e. relative mitochondrial mass was increased by 40% in the soma of PV-/- PC. Upregulation of mitochondrial volume density was not homogenous throughout the soma, but was selectively restricted to a peripheral region of 1.5 microm width underneath the plasma membrane. Accompanied was a decreased surface of subplasmalemmal smooth endoplasmic reticulum (sPL-sER) in a shell of 0.5 microm thickness underneath the plasma membrane. These alterations were specific for the absence of the "slow-onset" buffer PV, since in CB-/- mice neither changes in peripheral mitochondria nor in sPL-sER were observed. This implicates that the morphological alterations are aimed to specifically substitute the function of the slow buffer PV. We propose a novel concept that homeostatic mechanisms of components involved in Ca(2+) homeostasis do not always occur at the level of similar or closely related molecules. Rather the cell attempts to restore spatiotemporal aspects of Ca(2+) signals prevailing in the undisturbed (wildtype) situation by subtly fine tuning existing components involved in the regulation of Ca(2+) fluxes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In protein folding and secretion disorders, activation of endoplasmic reticulum (ER) stress signaling (ERSS) protects cells, alleviating stress that would otherwise trigger apoptosis. Whether the stress-surviving cells resume normal function is not known. We studied the in vivo impact of ER stress in terminally differentiating hypertrophic chondrocytes (HCs) during endochondral bone formation. In transgenic mice expressing mutant collagen X as a consequence of a 13-base pair deletion in Col10a1 (13del), misfolded alpha1(X) chains accumulate in HCs and elicit ERSS. Histological and gene expression analyses showed that these chondrocytes survived ER stress, but terminal differentiation is interrupted, and endochondral bone formation is delayed, producing a chondrodysplasia phenotype. This altered differentiation involves cell-cycle re-entry, the re-expression of genes characteristic of a prehypertrophic-like state, and is cell-autonomous. Concomitantly, expression of Col10a1 and 13del mRNAs are reduced, and ER stress is alleviated. ERSS, abnormal chondrocyte differentiation, and altered growth plate architecture also occur in mice expressing mutant collagen II and aggrecan. Alteration of the differentiation program in chondrocytes expressing unfolded or misfolded proteins may be part of an adaptive response that facilitates survival and recovery from the ensuing ER stress. However, the altered differentiation disrupts the highly coordinated events of endochondral ossification culminating in chondrodysplasia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The translocation of secretory and membrane proteins across the endoplasmic reticulum (ER) membrane is mediated by co-translational (via the signal recognition particle (SRP)) and post-translational mechanisms. In this study, we investigated the relative contributions of these two pathways in trypanosomes. A homologue of SEC71, which functions in the post-translocation chaperone pathway in yeast, was identified and silenced by RNA interference. This factor is essential for parasite viability. In SEC71-silenced cells, signal peptide (SP)-containing proteins traversed the ER, but several were mislocalized, whereas polytopic membrane protein biogenesis was unaffected. Surprisingly trypanosomes can interchangeably utilize two of the pathways to translocate SP-containing proteins except for glycosylphosphatidylinositol-anchored proteins, whose level was reduced in SEC71-silenced cells but not in cells depleted for SRP68, an SRP-binding protein. Entry of SP-containing proteins to the ER was significantly blocked only in cells co-silenced for the two translocation pathways (SEC71 and SRP68). SEC63, a factor essential for both translocation pathways in yeast, was identified and silenced by RNA interference. SEC63 silencing affected entry to the ER of both SP-containing proteins and polytopic membrane proteins, suggesting that, as in yeast, this factor is essential for both translocation pathways in vivo. This study suggests that, unlike bacteria or other eukaryotes, trypanosomes are generally promiscuous in their choice of mechanism for translocating SP-containing proteins to the ER, although the SRP-independent pathway is favored for glycosylphosphatidylinositol-anchored proteins, which are the most abundant surface proteins in these parasites.