25 resultados para Response Surface
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND:: The interaction of sevoflurane and opioids can be described by response surface modeling using the hierarchical model. We expanded this for combined administration of sevoflurane, opioids, and 66 vol.% nitrous oxide (N2O), using historical data on the motor and hemodynamic responsiveness to incision, the minimal alveolar concentration, and minimal alveolar concentration to block autonomic reflexes to nociceptive stimuli, respectively. METHODS:: Four potential actions of 66 vol.% N2O were postulated: (1) N2O is equivalent to A ng/ml of fentanyl (additive); (2) N2O reduces C50 of fentanyl by factor B; (3) N2O is equivalent to X vol.% of sevoflurane (additive); (4) N2O reduces C50 of sevoflurane by factor Y. These four actions, and all combinations, were fitted on the data using NONMEM (version VI, Icon Development Solutions, Ellicott City, MD), assuming identical interaction parameters (A, B, X, Y) for movement and sympathetic responses. RESULTS:: Sixty-six volume percentage nitrous oxide evokes an additive effect corresponding to 0.27 ng/ml fentanyl (A) with an additive effect corresponding to 0.54 vol.% sevoflurane (X). Parameters B and Y did not improve the fit. CONCLUSION:: The effect of nitrous oxide can be incorporated into the hierarchical interaction model with a simple extension. The model can be used to predict the probability of movement and sympathetic responses during sevoflurane anesthesia taking into account interactions with opioids and 66 vol.% N2O.
Resumo:
Various pharmacodynamic response surface models have been developed to quantitatively describe the relationship between two or more drug concentrations with their combined clinical effect. We examined the interaction of remifentanil and sevoflurane on the probability of tolerance to shake and shout, tetanic stimulation, laryngeal mask airway insertion, and laryngoscopy in patients to compare the performance of five different response surface models.
Resumo:
This chapter will present the conceptual and applied approaches to capture the interaction of anesthetic hypnotic drugs with opioid drugs, as used in the clinical anesthetic state. The graphic and mathematical approaches used to capture hypnotic/opiate anesthetic drug interactions will be presented. This chapter is not a review article about interaction modeling, but focuses on specific drug interactions within a quite narrow field, anesthesia.
Resumo:
BACKGROUND: Propofol and sevoflurane display additivity for gamma-aminobutyric acid receptor activation, loss of consciousness, and tolerance of skin incision. Information about their interaction regarding electroencephalographic suppression is unavailable. This study examined this interaction as well as the interaction on the probability of tolerance of shake and shout and three noxious stimulations by using a response surface methodology. METHODS: Sixty patients preoperatively received different combined concentrations of propofol (0-12 microg/ml) and sevoflurane (0-3.5 vol.%) according to a crisscross design (274 concentration pairs, 3 to 6 per patient). After having reached pseudo-steady state, the authors recorded bispectral index, state and response entropy and the response to shake and shout, tetanic stimulation, laryngeal mask airway insertion, and laryngoscopy. For the analysis of the probability of tolerance by logistic regression, a Greco interaction model was used. For the separate analysis of bispectral index, state and response entropy suppression, a fractional Emax Greco model was used. All calculations were performed with NONMEM V (GloboMax LLC, Hanover, MD). RESULTS: Additivity was found for all endpoints, the Ce(50, PROP)/Ce(50, SEVO) for bispectral index suppression was 3.68 microg. ml(-1)/ 1.53 vol.%, for tolerance of shake and shout 2.34 microg . ml(-1)/ 1.03 vol.%, tetanic stimulation 5.34 microg . ml(-1)/ 2.11 vol.%, laryngeal mask airway insertion 5.92 microg. ml(-1) / 2.55 vol.%, and laryngoscopy 6.55 microg. ml(-1)/2.83 vol.%. CONCLUSION: For both electroencephalographic suppression and tolerance to stimulation, the interaction of propofol and sevoflurane was identified as additive. The response surface data can be used for more rational dose finding in case of sequential and coadministration of propofol and sevoflurane.
Resumo:
Prevention and treatment of osteoporosis rely on understanding of the micromechanical behaviour of bone and its influence on fracture toughness and cell-mediated adaptation processes. Postyield properties may be assessed by nonlinear finite element simulations of nanoindentation using elastoplastic and damage models. This computational study aims at determining the influence of yield surface shape and damage on the depth-dependent response of bone to nanoindentation using spherical and conical tips. Yield surface shape and damage were shown to have a major impact on the indentation curves. Their influence on indentation modulus, hardness, their ratio as well as the elastic-to-total work ratio is well described by multilinear regressions for both tip shapes. For conical tips, indentation depth was not statistically significant (p<0.0001). For spherical tips, damage was not a significant parameter (p<0.0001). The gained knowledge can be used for developing an inverse method for identification of postelastic properties of bone from nanoindentation.
Resumo:
We investigated the inflammatory response to, and the osteoinductive efficacies of, four polymers (collagen, Ethisorb, PLGA and Polyactive) that bore either an adsorbed (fast-release kinetics) or a calcium-phosphate-coating-incorporated (slow-release kinetics) depot of BMP-2. Titanium-plate-supported discs of each polymer (n = 6 per group) were implanted at an ectopic (subcutaneous) ossification site in rats (n = 48). Five weeks later, they were retrieved for a histomorphometric analysis of the volumes of ectopic bone and foreign-body giant cells (a gauge of inflammatory reactivity), and the degree of polymer degradation. For each polymer, the osteoinductive efficacy of BMP-2 was higher when it was incorporated into a coating than when it was directly adsorbed onto the material. This mode of BMP-2 carriage was consistently associated with an attenuation of the inflammatory response. For coated materials, the volume density of foreign-body giant cells was inversely correlated with the volume density of bone (r(2) = 0.96), and the volume density of bone was directly proportional to the surface-area density of the polymer (r(2) = 0.97). Following coating degradation, other competitive factors, such as the biocompatibility and the biodegradability of the polymer itself, came into play.
Resumo:
Intracellular copper routing in Enterococcus hirae is accomplished by the CopZ copper chaperone. Under copper stress, CopZ donates Cu(+) to the CopY repressor, thereby releasing its bound zinc and abolishing repressor-DNA interaction. This in turn induces the expression of the cop operon, which encodes CopY and CopZ, in addition to two copper ATPases, CopA and CopB. To gain further insight into the function of CopZ, the yeast two-hybrid system was used to screen for proteins interacting with the copper chaperone. This led to the identification of Gls24, a member of a family of stress response proteins. Gls24 is part of an operon containing eight genes. The operon was induced by a range of stress conditions, but most notably by copper. Gls24 was overexpressed and purified, and was shown by surface plasmon resonance analysis to also interact with CopZ in vitro. Circular dichroism measurements revealed that Gls24 is partially unstructured. The current findings establish a novel link between Gls24 and copper homeostasis.
Resumo:
OBJECTIVES: To compare the gene expression profile of osseointegration associated with a moderately rough and a chemically modified hydrophilic moderately rough surface in a human model. MATERIAL AND METHODS: Eighteen solid screw-type cylindrical titanium implants, 4 mm long and 2.8 mm wide, with either a moderately rough (SLA) or a chemically modified moderately rough (SLActive) surface were surgically inserted in the retromolar area of nine human volunteers. The devices were removed using a trephine following 4, 7 and 14 days of healing. The tissue surrounding the implant was harvested, total RNA was extracted and microarray analysis was carried out to identify the differences in the transcriptome between the SLA and SLActive surfaces at days 4, 7 and 14. RESULTS: There were no functionally relevant gene ontology categories that were over-represented in the list of genes that were differentially expressed at day 4. However, by day 7, osteogenesis- and angiogenesis-associated gene expression were up-regulated on the SLActive surface. Osteogenesis and angiogenesis appeared to be regulated by BMP and VEGF signalling, respectively. By day 14, VEGF signalling remains up-regulated on the SLActive surface, while BMP signalling was up-regulated on the SLA surface in what appeared to be a delayed compensatory response. Furthermore, neurogenesis was a prominent biological process within the list of differentially expressed genes, and it was influenced by both surfaces. CONCLUSIONS: Compared with SLA, SLActive exerts a pro-osteogenic and pro-angiogenic influence on gene expression at day 7 following implant insertion, which may be responsible for the superior osseointegrative properties of this surface.
Resumo:
The apparently spontaneous development of autoantibodies to ADAMTS13 in previously healthy individuals is a major cause of thrombotic thrombocytopenic purpura (TTP). Epitope mapping studies have shown that in most patients antibodies directed towards the spacer domain of ADAMTS13 are present. A single antigenic surface comprising Arg(660) , Tyr(661) and Tyr(665) that contributes to the productive binding of ADAMTS13 to unfolded von Willebrand factor is targeted by anti-spacer domain antibodies. Antibodies directed to the carboxyl-terminal CUB1-2 and TSP2-8 domains have also been observed in the plasma of patients with acquired TTP. As yet it has not been established whether this class of antibodies modulates ADAMTS13 activity. Inspection of the primary sequence of human monoclonal anti-ADAMTS13 antibodies suggests that the variable heavy chain germline gene segment VH1-69 is frequently incorporated. We suggest a model in which 'shape complementarity' between the spacer domain and residues encoded by the VH1-69 gene segment explain the preferential use of this variable heavy chain gene segment. Finally, a model is presented for the development of anti-ADAMTS13 antibodies in previously healthy individuals that incorporates the recent identification of HLA DRB1*11 as a risk factor for acquired TTP.
Resumo:
Tissue engineering has been increasingly brought to the scientific spotlight in response to the tremendous demand for regeneration, restoration or substitution of skeletal or cardiac muscle after traumatic injury, tumour ablation or myocardial infarction. In vitro generation of a highly organized and contractile muscle tissue, however, crucially depends on an appropriate design of the cell culture substrate. The present work evaluated the impact of substrate properties, in particular morphology, chemical surface composition and mechanical properties, on muscle cell fate. To this end, aligned and randomly oriented micron (3.3±0.8 μm) or nano (237±98 nm) scaled fibrous poly(ε-caprolactone) non-wovens were processed by electrospinning. A nanometer-thick oxygen functional hydrocarbon coating was deposited by a radio frequency plasma process. C2C12 muscle cells were grown on pure and as-functionalized substrates and analysed for viability, proliferation, spatial orientation, differentiation and contractility. Cell orientation has been shown to depend strongly on substrate architecture, being most pronounced on micron-scaled parallel-oriented fibres. Oxygen functional hydrocarbons, representing stable, non-immunogenic surface groups, were identified as strong triggers for myotube differentiation. Accordingly, the highest myotube density (28±15% of total substrate area), sarcomeric striation and contractility were found on plasma-coated substrates. The current study highlights the manifold material characteristics to be addressed during the substrate design process and provides insight into processes to improve bio-interfaces.
Resumo:
The surfaces of Bacillus anthracis endospores expose a pentasaccharide containing the monosaccharide anthrose, which has been considered for use as a vaccine or target for specific detection of the spores. In this study B. anthracis strains isolated from cattle carcasses in African countries where anthrax is endemic were tested for their cross-reactivity with monoclonal antibodies (MAbs) specific for anthrose-containing oligosaccharides. Unexpectedly, none of the isolates collected in Chad, Cameroon, and Mali were recognized by the MAbs. Sequencing of the four-gene operon encoding anthrose biosynthetic enzymes revealed the presence of premature stop codons in the aminotransferase and glycosyltransferase genes in all isolates from Chad, Cameroon, and Mali. Both immunological and genetic findings suggest that the West African isolates are unable to produce anthrose. The anthrose-deficient strains from West Africa belong to a particular genetic lineage. Immunization of cattle in Chad with a locally produced vaccine based on anthrose-positive spores of the B. anthracis strain Sterne elicited an anti-carbohydrate IgG response specific for a synthetic anthrose-containing tetrasaccharide as demonstrated by glycan microarray analysis. Competition immunoblots with synthetic pentasaccharide derivatives suggested an immunodominant role of the anthrose-containing carbohydrate in cattle. In West Africa anthrax is highly endemic. Massive vaccination of livestock in this area has taken place over long periods of time using spores of the anthrose-positive vaccine strain Sterne. The spread of anthrose-deficient strains in this region may represent an escape strategy of B. anthracis.
Resumo:
The use of metal implants in dental and orthopedic surgery is continuously expanding and highly successful. While today longevity and load-bearing capacity of the implants fulfill the expectations of the patients, acceleration of osseointegration would be of particular benefit to shorten the period of convalescence. To further clarify the options to accelerate the kinetics of osseointegration, within this study, the osteogenic properties of structurally identical surfaces with different metal coatings were investigated. To assess the development and function of primary human osteoblasts on metal surfaces, cell viability, differentiation, and gene expression were determined. Titanium surfaces were used as positive, and surfaces coated with gold were used as negative controls. Little differences in the cellular parameters tested for were found when the cells were grown on titanium discs sputter coated with titanium, zirconium, niobium, tantalum, gold, and chromium. Cell number, activity of cell layer-associated alkaline phosphatase (ALP), and levels of transcripts encoding COL1A1 and BGLAP did not vary significantly in dependence of the surface chemistry. Treatment of the cell cultures with 1,25(OH)2 D3 /Dex, however, significantly increased ALP activity and BGLAP messenger RNA levels. The data demonstrate that the metal layer coated onto the titanium discs exerted little modulatory effects on cell behavior. It is suggested that the microenvironment regulated by the peri-implant tissues is more effective in regulating the tissue response than is the material of the implant itself.
Resumo:
Chironomids preserved in a sediment core from Lago di Origlio (416 m a.s.l.), a lake in the foreland of the Southern Swiss Alps, allowed quantitative reconstruction of Late Glacial and Early Holocene summer temperatures using a combined Swiss–Norwegian temperature inference model based on chironomid assemblages from 274 lakes. We reconstruct July air temperatures of ca. 10 °C between 17 300 and 16 000 cal yr BP, a rather abrupt warming to ca. 12.0 °C at ca. 16 500–16 000 cal yr BP, and a strong temperature increase at the transition to the Bølling/Allerød interstadial with average temperatures of about 14 °C. During the Younger Dryas and earliest Holocene similar temperatures are reconstructed as for the interstadial. The rather abrupt warming at 16 500–16 000 cal yr BP is consistent with sea-surface temperature as well as speleothem records, which indicate a warming after the end of Heinrich event 1 (sensu stricto) and before the Bølling/Allerød interstadial in southern Europe and the Mediterranean Sea. Pollen records from Origlio and other sites in southern Switzerland and northern Italy indicate an early reforestation of the lowlands 2000–1500 yr prior to the large-scale afforestation of Central Europe at the onset of the Bølling/Allerød period at ca. 14 700–14 600 cal yr BP. Our results suggest that these early afforestation processes in the formerly glaciated areas of northern Italy and southern Switzerland have been promoted by increasing temperatures.
Resumo:
Inhaled particles may cause increased pulmonary and cardiovascular morbidity and mortality. The wall structures of airways and alveoli act as a series of structural and functional barriers against inhaled particles. Deposited particles are displaced and come into close association with epithelial cells, macrophages and dendritic cells. The cellular interplay after particle deposition in a triple cell co-culture model of the human airway wall was investigated by laser scanning microscopy. Furthermore, the cellular response was determined by measurement of TNF-alpha. Dendritic cells gained access to the apical side of the epithelium where they sampled particles and interacted with macrophages.
Resumo:
BACKGROUND: Severe brain trauma leads to an activation of the immune system. To this date, neither the exact perturbation of the specific immune reaction induced by the traumatic brain injury (TBI), nor the interactions leading to the infiltration of peripheral immune cells into the brain are fully understood. PATIENTS AND METHODS: Serum was collected from 17 patients with TBI and a long bone fracture, 24 patients with an isolated long bone fracture and from healthy individuals. The effect of the serum on normal human monocytes and T-lymphocytes was tested in vitro by assessing proliferation and expression of surface markers, chemokine receptors and cytokines. RESULTS: Serum collected from patients with a TBI and a long bone fracture increased the expression of the chemokine receptor CCR4 in monocytes when compared to patients with an isolated long bone fracture. Extending this comparison to T-lymphocytes, the serum from TBI patients induced lower proliferation rates and decreased expression of the pro-inflammatory cytokine TNF-alpha, while simultaneously increasing the secretion of immune-modulatory cytokines (IL-4, IL-10 and TGF-beta) (p<0.05). CONCLUSION: Patients with a TBI release currently unknown soluble factors into the circulating blood that up regulate expression of chemokine receptor CCR4 in peripheral blood monocytes whilst concurrently inducing expression of immunosuppressive cytokines by activated T-lymphocytes.