91 resultados para Residue curve maps
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Pathoanatomic studies have failed to map accurately the primary lymphatic landing sites of the urinary bladder.
Resumo:
To (1) establish the feasibility of texture analysis for the in vivo assessment of biochemical changes in meniscal tissue on delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC), and (2) compare textural with conventional T1 relaxation time measurements calculated from dGEMRIC data ("T1(Gd) relaxation times").
Resumo:
Benzodiazepines act at the major isoforms of GABA type A receptors where they potentiate the current evoked by the agonist GABA. The underlying mechanism of this potentiation is poorly understood, but hypothesized to be related to the mechanism that links agonist binding to channel opening in these ligand activated ion channels. The loop F of the ?(1) and the ?(2) subunit have been implicated in channel gating, and loop F of the ?(2) subunit in the modulation by benzodiazepines. We have identified the conservative point mutation Y168F located N-terminally of loop F in the ?(1) subunit that fails to affect agonist properties. Interestingly, it disrupts modulation by benzodiazepines, but leaves high affinity binding to the benzodiazepine binding site intact. Modulation by barbiturates and neurosteroids is also unaffected. Residue ?(1) Y168 is not located either near the binding pockets for GABA, or for benzodiazepines, or close to the loop F of the ?(2) subunit. Our results support the fact, that broader regions of ligand gated receptors are conformationally affected by the binding of benzodiazepines. We infer that also broader regions could contribute to signaling from GABA agonist binding to channel opening.
Resumo:
W5.43(194), a conserved tryptophan residue among G-protein coupled receptors (GPCRs) and cannabinoid receptors (CB), was examined in the present report for its significance in CB2 receptor ligand binding and adenylyl cyclase (AC) activity. Computer modeling postulates that this site in CB2 may be involved in the affinity of WIN55212-2 and SR144528 through aromatic contacts. In the present study, we reported that a CB2 receptor mutant, W5.43(194)Y, which had a tyrosine (Y) substitution for tryptophan (W), retained the binding affinity for CB agonist CP55940, but reduced binding affinity for CB2 agonist WIN55212-2 and inverse agonist SR144528 by 8-fold and 5-fold, respectively; the CB2 W5.43(194)F and W5.43(194)A mutations significantly affect the binding activities of CP55940, WIN55212-2 and SR144528. Furthermore, we found that agonist-mediated inhibition of the forskolin-induced cAMP production was dramatically diminished in the CB2 mutant W5.43(194)Y, whereas W5.43(194)F and W5.43(194)A mutants resulted in complete elimination of downstream signaling, suggesting that W5.43(194) was essential for the full activation of CB2. These results indicate that both aromatic interaction and hydrogen bonding are involved in ligand binding for the residue W5.43(194), and the mutations of this tryptophan site may affect the conformation of the ligand binding pocket and therefore control the active conformation of the wild type CB2 receptor. W5.43(194)Y/F/A mutations also displayed noticeable enhancement of the constitutive activation probably attributed to the receptor conformational changes resulted from the mutations.