16 resultados para Remineralization
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The aim of the present study was to evaluate the remineralization potential of five dentifrices with different fluoride concentrations. Initial caries lesions were created in 72 cylindrical enamel blocks from deciduous teeth. The specimens were randomly distributed among six experimental groups corresponding to six experimental periods. Each of the six volunteers carried two deciduous enamel specimens fixed in an intraoral appliance for a period of 4 weeks. They brushed their teeth and the enamel blocks at least two times a day with dentifrices containing 0 ppm (period 1), 250 ppm (period 2), and 500 ppm fluoride (period 3), respectively. A second group of volunteers (n = 6) used dentifrices with a fluoride content of 0 ppm (period 4), 1,000 ppm (period 5), or 1,500 ppm (period 6). At the end of the respective period, the mineral content was determined by transversal microradiography (TMR). The use of dentifrices containing 500 ppm fluoride (38% MR), 1,000 ppm fluoride (42% MR), and 1,500 ppm fluoride (42% MR) resulted in a statistically significant higher mineral recovery compared to the control group (0 ppm fluoride). Mineral recovery was similar after use of dentifrices containing 0 and 250 ppm fluoride (24%; 25%). It is concluded that it is possible to remineralize initial carious lesions in deciduous enamel in a similar way as it has been described for enamel of permanent teeth.
Resumo:
Limited information is available on the time-dependent or dosage-dependent cariostatic efficacy of highly concentrated fluoride compounds. This good clinical practice-conforming, double-blind, placebo-controlled, crossover in situ study tested the hypothesis that a 1.0% amine fluoride fluid is superior to a 0.5% amine fluoride fluid regarding fluoride retention and mineral change in initial caries enamel lesions over a period of 28 d. Fluoride retention was significantly higher after application of the two fluoride fluids compared with placebo but had decreased in both groups to similar levels after only 1 wk. Mineral gain was significantly higher for both verum groups compared with placebo. The use of 1% fluoride fluid resulted in significantly higher remineralization compared with the use of 0.5% fluoride fluid. For both fluoride fluids mineral gain followed a linear relationship with time during the experimental period, indicating a possible further uptake of mineral, even after 4 wk.
Resumo:
This study aimed to evaluate the effectiveness of fluorescence-based methods (DIAGNOdent, LF; DIAGNOdent pen, LFpen, and VistaProof fluorescence camera, FC) in detecting demineralization and remineralization on smooth surfaces in situ. Ten volunteers wore acrylic palatal appliances, each containing 6 enamel blocks that were demineralized for 14 days by exposure to a 20% sucrose solution and 3 of them were remineralized for 7 days with fluoride dentifrice. Sixty enamel blocks were evaluated at baseline, after demineralization and 30 blocks after remineralization by two examiners using LF, LFpen and FC. They were submitted to surface microhardness (SMH) and cross-sectional microhardness analysis. The integrated loss of surface hardness (ΔKHN) was calculated. The intraclass correlation coefficient for interexaminer reproducibility ranged from 0.21 (FC) to 0.86 (LFpen). SMH, LF and LFpen values presented significant differences among the three phases. However, FC fluorescence values showed no significant differences between the demineralization and remineralization phases. Fluorescence values for baseline, demineralized and remineralized enamel were, respectively, 5.4 ± 1.0, 9.2 ± 2.2 and 7.0 ± 1.5 for LF; 10.5 ± 2.0, 15.0 ± 3.2 and 12.5 ± 2.9 for LFpen, and 1.0 ± 0.0, 1.0 ± 0.1 and 1.0 ± 0.1 for FC. SMH and ΔKHN showed significant differences between demineralization and remineralization phases. There was a negative and significant correlation between SMH and LF and LFpen in the remineralization phase. In conclusion, LF and LFpen devices were effective in detecting demineralization and remineralization on smooth surfaces provoked in situ.
Resumo:
Objectives: This in vitro study aimed to investigate the protective effect of four commercial novel agents against erosion. Methods: Ninety human molars were distributed into 9 groups, and after incubation in human saliva for 2 h, a pellicle was formed. Subsequently, the specimens were submitted to demineralization (orange juice, pH 3.6, 3 min) and remineralization (paste slurry containing one of the tested novel agents, 3 min) cycles, two times per day, for 4 days. The tested agents were: (1) DenShield Tooth; active ingredient: 7.5% W/W NovaMin® (calcium sodium phosphosilicate); (2) Nanosensitive hca; active ingredient: 7.5% W/W NovaMin®; (3) GC Tooth Mousse; active ingredient: 10% Recaldent™ (CPP-ACP); (4) GC MI Paste Plus; active ingredients: 10% Recaldent™, 900 ppm fluoride. Two experimental procedures were performed: in procedure 1, the tested agents were applied prior to the erosive attack, and in procedure 2 after the erosive attack. A control group receiving no prophylactic treatment was included. Surface nanohardness (SNH) of enamel specimens was measured after pellicle formation and after completion of daily cyclic treatment. Results: SNH significantly decreased at the end of the experiment for all groups (p < 0.05). In both procedures, there was no statistically significant difference between the control group and those treated with paste slurries (p > 0.05). In addition, the changes in SNH (ΔSNH = SNHbaseline − SNHfinal) did not show statistically significant difference between both procedures (p > 0.05). Conclusion: Tooth erosion cannot be prevented or repaired by these novel agents, regardless of fluoride content.
Resumo:
The present study assessed the effects of abrasion, salivary proteins, and measurement angle on the quantification of early dental erosion by the analysis of reflection intensities from enamel. Enamel from 184 caries-free human molars was used for in vitro erosion in citric acid (pH 3.6). Abrasion of the eroded enamel resulted in a 6% to 14% increase in the specular reflection intensity compared to only eroded enamel, and the reflection increase depended on the erosion degree. Nevertheless, monitoring of early erosion by reflection analysis was possible even in the abraded eroded teeth. The presence of the salivary pellicle induced up to 22% higher reflection intensities due to the smoothing of the eroded enamel by the adhered proteins. However, this measurement artifact could be significantly minimized (p<0.05) by removing the pellicle layer with 3% NaOCl solution. Change of the measurement angles from 45 to 60 deg did not improve the sensitivity of the analysis at late erosion stages. The applicability of the method for monitoring the remineralization of eroded enamel remained unclear in a demineralization/remineralization cycling model of early dental erosion in vitro.
Resumo:
Summary Various authors have shown that the caries decline in the industrialized countries during recent decades is based on the use of fluorides, of which local fluoride application in the form of fluoridated toothpastes is of primary importance. The caries-protective potential of fluorapatite is quite low; in contrast, dissolved fluorides in the vicinity of enamel are effective both in promoting remineralization and inhibiting demineralization. Considering the fact that the caries decline occurred at the same time that local fluoridation measures became widely used, the conclusion seems justified that regular application of F⁻ can inhibit caries.
Resumo:
Biological factors such as saliva, acquired dental pellicle, tooth structure and positioning in relation to soft tissues and tongue are related to dental erosion development. Saliva has been shown to be the most important biological factor in the prevention of dental erosion. It starts acting even before the acid attack, with the increase of the salivary flow rate as a response to the acidic stimuli. This creates a favorable scenario, increasing the buffering system of saliva and effectively diluting and clearing acids on dental surfaces during the erosive challenge. Saliva plays a role in the formation of the acquired dental pellicle, which acts as a perm-selective membrane preventing contact of the acid with the tooth surf aces. The protective level of the pellicle seems to be regulated by its composition, thickness and maturation time. Due to its mineral content, saliva can also prevent demineralization as well as enhance remineralization. However, these preventive and reparative factors of saliva may not be enough against highly erosive challenges, leading to erosion development. The progress rate of erosion can be significantly influenced by the type of dental substrate, occurrence of mechanical and chemical attacks, fluoride exposure, and also by contact with the oral soft tissues and tongue.
Resumo:
The aim of the present study was to test the impact of different toothpastes on the prevention of erosion. Enamel demineralization and remineralization were monitored using surface microhardness (SMH) measurements. Human enamel specimens were treated following two different procedures: (1) incubation in toothpaste slurry followed by acid softening and artificial saliva exposure; (2) acid softening followed by incubation in toothpaste slurry and artificial saliva exposure. For the control procedure, toothpaste treatment was excluded. The following toothpastes were tested: Zendium, Sensodyne Proschmelz (Pronamel), Prodent Rocket Power, Meridol and Signal active. Normalized SMH values compared to the baseline (= 1.00) after 1-hour artificial saliva exposure for procedure 1 (respectively for procedure 2) were as follows (mean: 95% CI): Sensodyne Proschmelz 0.97: 0.93, 1.00 (0.92: 0.90, 0.94), Zendium 0.97: 0.94, 1.00 (0.89: 0.83, 0.95), Meridol 0.97: 0.94, 1.00 (0.94: 0.92, 0.96), Signal active 0.94: 0.91, 0.97 (0.95: 0.91, 0.99), Prodent Rocket Power 0.92: 0.90, 0.94 (0.93: 0.89, 0.97) and control 0.91: 0.88, 0.94. Further exposure to artificial saliva for up to 4 h showed no significant improvement of SMH. Regression analyses revealed a significant impact of the applied procedure. Incubation in toothpaste slurries before the acid challenge seems to be favorable to prevent erosion. None of the tested toothpastes showed statistically significant better protection than another against an erosive attack.
Resumo:
Decadal-to-century scale trends for a range of marine environmental variables in the upper mesopelagic layer (UML, 100–600 m) are investigated using results from seven Earth System Models forced by a high greenhouse gas emission scenario. The models as a class represent the observation-based distribution of oxygen (O2) and carbon dioxide (CO2), albeit major mismatches between observation-based and simulated values remain for individual models. By year 2100 all models project an increase in SST between 2 °C and 3 °C, and a decrease in the pH and in the saturation state of water with respect to calcium carbonate minerals in the UML. A decrease in the total ocean inventory of dissolved oxygen by 2% to 4% is projected by the range of models. Projected O2 changes in the UML show a complex pattern with both increasing and decreasing trends reflecting the subtle balance of different competing factors such as circulation, production, remineralization, and temperature changes. Projected changes in the total volume of hypoxic and suboxic waters remain relatively small in all models. A widespread increase of CO2 in the UML is projected. The median of the CO2 distribution between 100 and 600m shifts from 0.1–0.2 mol m−3 in year 1990 to 0.2–0.4 mol m−3 in year 2100, primarily as a result of the invasion of anthropogenic carbon from the atmosphere. The co-occurrence of changes in a range of environmental variables indicates the need to further investigate their synergistic impacts on marine ecosystems and Earth System feedbacks.
Resumo:
Fluorides are used in dental care due to their beneficial effect in tooth enamel de-/remineralization cycles. To achieve a desired constant supply of soluble fluorides in the oral cavity, different approaches have been followed. Here we present results on the preparation of CaF2 particles and their characterization with respect to a potential application as enamel associated fluoride releasing reservoirs. CaF2 particles were synthesized by precipitation from soluble NaF and CaCl2 salt solutions of defined concentrations and their morphology analyzed by scanning electron microscopy. CaF2 particles with defined sizes and shapes could be synthesized by adjusting the concentrations of the precursor salt solutions. Such particles interacted with enamel surfaces when applied at fluoride concentrations correlating to typical dental care products. Fluoride release from the synthesized CaF2 particles was observed to be largely influenced by the concentration of phosphate in the solution. Physiological solutions with phosphate concentration similar to saliva (3.5 mM) reduced the fluoride release from pure CaF2 particles by a factor of 10-20 × as compared to phosphate free buffer solutions. Fluoride release was even lower in human saliva. The fluoride release could be increased by the addition of phosphate in substoichiometric amounts during CaF2 particle synthesis. The presented results demonstrate that the morphology and fluoride release characteristics of CaF2 particles can be tuned and provide evidence of the suitability of synthetic CaF2 particles as enamel associated fluoride reservoirs.
Resumo:
Dental erosion is caused by repeated short episodes of exposure to acids. Dental minerals are calcium-deficient, carbonated hydroxyapatites containing impurity ions such as Na(+), Mg(2+) and Cl(-). The rate of dissolution, which is crucial to the progression of erosion, is influenced by solubility and also by other factors. After outlining principles of solubility and acid dissolution, this chapter describes the factors related to the dental tissues on the one hand and to the erosive solution on the other. The impurities in the dental mineral introduce crystal strain and increase solubility, so dentine mineral is more soluble than enamel mineral and both are more soluble than hydroxyapatite. The considerable differences in structure and porosity between dentine and enamel influence interactions of the tissues with acid solutions, so the relative rates of dissolution do not necessarily reflect the respective solubilities. The rate of dissolution is further influenced strongly by physical factors (temperature, flow rate) and chemical factors (degree of saturation, presence of inhibitors, buffering, pH, fluoride). Temperature and flow rate, as determined by the method of consumption of a product, strongly influence erosion in vivo. The net effect of the solution factors determines the overall erosive potential of different products. Prospects for remineralization of erosive lesions are evaluated.
Resumo:
Poly(ethylene oxide) (PEO) has long been used as an additive in toothpaste, partly because it reduces biofilm formation on teeth. It does not, however, reduce the formation of dental calculus or support the remineralization of dental enamel or dentine. The present article describes the synthesis of new block copolymers on the basis of PEO and poly(3-sulfopropyl methacrylate) blocks using atom transfer radical polymerization. The polymers have very large molecular weights (over 10(6) g/mol) and are highly water-soluble. They delay the precipitation of calcium phosphate from aqueous solution but, upon precipitation, lead to relatively monodisperse hydroxyapatite (HAP) spheres. Moreover, the polymers inhibit the bacterial colonization of human enamel by Streptococcus gordonii, a pioneer bacterium in oral biofilm formation, in vitro. The formation of well-defined HAP spheres suggests that a polymer-induced liquid precursor phase could be involved in the precipitation process. Moreover, the inhibition of bacterial adhesion suggests that the polymers could be utilized in caries prevention.
Resumo:
The aims of this study were (1) to assess the amount of fluoride (F) released from varnishes containing calcium glycerophosphate (CaGP) and (2) to assess the effect of the experimental varnishes on in vitro demineralization. Six test groups using 5 varnishes: base varnish (no active ingredients); Duraphat® (2.26% NaF); Duofluorid® (5.63% NaF/CaF2); experimental varnish 1 (1% CaGP/5.63% NaF/CaF2); experimental varnish 2 (5% CaGP/5.63% NaF/CaF2); and no varnish were set up. In stage 1, 60 acrylic blocks were randomly distributed into 6 groups (n = 10). Then 300 µg of each varnish was applied to each block. The blocks were immersed in deionized water, which was changed after 1, 8, 12, 24, 48 and 72 hours. Fluoride concentration in the water was analyzed using a fluoride electrode. In stage 2, 60 bovine enamel samples were distributed into 6 groups (n = 10), and treated with 300 µg of the respective varnish. After 6 h the varnish was removed and the samples were subjected to a 7-day in vitro pH cycle (6 h demineralization/18 h remineralization per day). The demineralization was measured using surface hardness. The results showed that both experimental varnishes released more fluoride than Duofluorid® and Duraphat® (p < 0.05), but Duraphat® showed the best preventive effect by decreasing enamel hardness loss (p < 0.05). Therefore, we conclude that even though (1) the experimental varnishes containing CaGP released greater amounts of F, (2) they did not increase in the preventive effect against enamel demineralization.