16 resultados para Release system
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Boron is one of the trace elements in the human body which plays an important role in bone growth. Porous mesopore bioactive glass (MBG) scaffolds are proposed as potential bone regeneration materials due to their excellent bioactivity and drug-delivery ability. The aims of the present study were to develop boron-containing MBG (B-MBG) scaffolds by sol-gel method and to evaluate the effect of boron on the physiochemistry of B-MBG scaffolds and the response of osteoblasts to these scaffolds. Furthermore, the effect of dexamethasone (DEX) delivery in B-MBG scaffold system was investigated on the proliferation, differentiation and bone-related gene expression of osteoblasts. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of B-MBG scaffolds have been characterized. The effect of boron contents and large-pore porosity on the loading and release of DEX in B-MBG scaffolds were also investigated. The results have shown that the incorporation of boron into MBG scaffolds slightly decreases the specific surface area and pore volume, but maintains well-ordered mesopore structure and high surface area and nano-pore volume compared to non-mesopore bioactive glass. Boron contents in MBG scaffolds did not influence the nano-pore size distribution or the loading and release of DEX. B-MBG scaffolds have the ability to maintain a sustained release of DEX in a long-term span. Incorporating boron into MBG glass scaffolds led to a controllable release of boron ions and significantly improved the proliferation and bone-related gene expression (Col I and Runx2) of osteoblasts. Furthermore, the sustained release of DEX from B-MBG scaffolds significantly enhanced alkaline phosphatase (ALP) activity and gene expressions (Col I, Runx2, ALP and BSP) of osteoblasts. These results suggest that boron plays an important role in enhancing osteoblast proliferation in B-MBG scaffold system and DEX-loaded B-MBG scaffolds show great potential as a release system to enhance osteogenic property for bone tissue engineering application.
Resumo:
Optimal sprint start performance requires the self-control of responses. Therefore, start performance should depend on self-control strength. It was expected that momentary depletion of self-control strength (ego depletion) would slow down the initiation of a sprint start, resulting in impaired reaction times. N = 37 participants performed three sprint starts at T1 and the average reaction times were measured with a foot-pressure release system attached under the starting block (in ms). Next, participants were randomly assigned to a depletion or a non-depletion condition and self-control strength was experimentally manipulated by applying the transcription task. Following the depletion manipulation, participants performed another series of three sprints (T2). The results of a mixed between (ego depletion: yes vs. no) within (T1 vs. T2) ANOVA supported the hypothesis as average reaction times in the depletion condition significantly increased from T1 (M = 0.35, SD = 0.03) to T2 (M = 0.38, SD = 0.04), F(1, 35) = 6.77, p = .01, η2p = .16. Average reaction times in the non-depletion condition did not differ significantly between T1 (M = 0.36, SD = 0.03) and T2 (M = 0.35, SD = 0.04), F(1, 35) = 0.47, p = .50, η2p = .01. In line with the hypothesis, higher levels of self-control strength were associated with quicker movement initiations. Therefore, improving self-control strength may serve as a buffer against the negative effects of ego depletion on performance.
Resumo:
The articular cartilage layer of synovial joints is commonly lesioned by trauma or by a degenerative joint disease. Attempts to repair the damage frequently involve the performance of autologous chondrocyte implantation (ACI). Healthy cartilage must be first removed from the joint, and then, on a separate occasion, following the isolation of the chondrocytes and their expansion in vitro, implanted within the lesion. The disadvantages of this therapeutic approach include the destruction of healthy cartilage-which may predispose the joint to osteoarthritic degeneration-the necessarily restricted availability of healthy tissue, the limited proliferative capacity of the donor cells-which declines with age-and the need for two surgical interventions. We postulated that it should be possible to induce synovial stem cells, which are characterized by high, age-independent, proliferative and chondrogenic differentiation capacities, to lay down cartilage within the outer juxtasynovial space after the transcutaneous implantation of a carrier bearing BMP-2 in a slow-release system. The chondrocytes could be isolated on-site and immediately used for ACI. To test this hypothesis, Chinchilla rabbits were used as an experimental model. A collagenous patch bearing BMP-2 in a slow-delivery vehicle was sutured to the inner face of the synovial membrane. The neoformed tissue was excised 5, 8, 11 and 14 days postimplantation for histological and histomorphometric analyses. Neoformed tissue was observed within the outer juxtasynovial space already on the 5th postimplantation day. It contained connective and adipose tissues, and a central nugget of growing cartilage. Between days 5 and 14, the absolute volume of cartilage increased, attaining a value of 12 mm(3) at the latter juncture. Bone was deposited in measurable quantities from the 11th day onwards, but owing to resorption, the net volume did not exceed 1.5 mm(3) (14th day). The findings confirm our hypothesis. The quantity of neoformed cartilage that is deposited after only 1 week within the outer juxtasynovial space would yield sufficient cells for ACI. Since the BMP-2-bearing patches would be implanted transcutaneously in humans, only one surgical or arthroscopic intervention would be called for. Moreover, most importantly, sufficient numbers of cells could be generated in patients of all ages.
Resumo:
Enhanced production of proinflammatory bradykinin-related peptides, the kinins, has been suggested to contribute to the pathogenesis of periodontitis, a common inflammatory disease of human gingival tissues. In this report, we describe a plausible mechanism of activation of the kinin-generating system, also known as the contact system or kininogen-kallikrein-kinin system, by the adsorption of its plasma-derived components such as high-molecular-mass kininogen (HK), prekallikrein (PK), and Hageman factor (FXII) to the cell surface of periodontal pathogen Porphyromonas gingivalis. The adsorption characteristics of mutant strains deficient in selected proteins of the cell envelope suggested that the surface-associated cysteine proteinases, gingipains, bearing hemagglutinin/adhesin domains (RgpA and Kgp) serve as the major platforms for HK and FXII adhesion. These interactions were confirmed by direct binding tests using microplate-immobilized gingipains and biotinylated contact factors. Other bacterial cell surface components such as fimbriae and lipopolysaccharide were also found to contribute to the binding of contact factors, particularly PK. Analysis of kinin release in plasma upon contact with P. gingivalis showed that the bacterial surface-dependent mechanism is complementary to the previously described kinin generation system dependent on HK and PK proteolytic activation by the gingipains. We also found that several P. gingivalis clinical isolates differed in the relative significance of these two mechanisms of kinin production. Taken together, these data show the importance of this specific type of bacterial surface-host homeostatic system interaction in periodontal infections.
Resumo:
Despite its appeal to explain plant invasions, the enemy release hypothesis (ERH) remains largely unexplored for tropical forest trees. Even scarcer are ERH studies conducted on the same host species at both the community and biogeographical scale, irrespective of the system or plant life form. In Cabrits National Park, Dominica, we observed patterns consistent with enemy release of two introduced, congeneric mahogany species, Swietenia macrophylla and S. mahagoni, planted almost 50 years ago. Swietenia populations at Cabrits have reproduced, with S. macrophylla juveniles established in and out of plantation areas at densities much higher than observed in its native range. Swietenia macrophylla juveniles also experienced significantly lower leaf-level herbivory (~3.0%) than nine co-occurring species native to Dominica (8.4–21.8%), and far lower than conspecific herbivory observed in its native range (11%–43%, on average). These complimentary findings at multiple scales support ERH, and confirm that Swietenia has naturalized at Cabrits. However, Swietenia abundance was positively correlated with native plant diversity at the seedling stage, and only marginally negatively correlated with native plant abundance for stems ≥1-cm dbh. Taken together, these descriptive patterns point to relaxed enemy pressure from specialized enemies, specifically the defoliator Steniscadia poliophaea and the shoot-borer Hypsipyla grandella, as a leading explanation for the enhanced recruitment of Swietenia trees documented at Cabrits.
Resumo:
Tannerella forsythia is a poorly studied pathogen despite being one of the main causes of periodontitis, which is an inflammatory disease of the supporting structures of the teeth. We found that despite being recognized by all complement pathways, T. forsythia is resistant to killing by human complement, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with karilysin, a metalloproteinase of T. forsythia, resulted in a decrease in bactericidal activity of the serum. T. forsythia strains expressing karilysin at higher levels were more resistant than low-expressing strains. Furthermore, the low-expressing strain was significantly more opsonized with activated complement factor 3 and membrane attack complex from serum compared with the other strains. The high-expressing strain was more resistant to killing in human blood. The protective effect of karilysin against serum bactericidal activity was attributable to its ability to inhibit complement at several stages. The classical and lectin complement pathways were inhibited because of the efficient degradation of mannose-binding lectin, ficolin-2, ficolin-3, and C4 by karilysin, whereas inhibition of the terminal pathway was caused by degradation of C5. Interestingly, karilysin was able to release biologically active C5a peptide in human plasma and induce migration of neutrophils. Importantly, we detected the karilysin gene in >90% of gingival crevicular fluid samples containing T. forsythia obtained from patients with periodontitis. Taken together, the newly characterized karilysin appears to be an important virulence factor of T. forsythia and might have several important implications for immune evasion.
Resumo:
To compare the 1-year cost-effectiveness of therapeutic assertive community treatment (ACT) with standard care in schizophrenia. ACT was specifically developed for patients with schizophrenia, delivered by psychosis experts highly trained in respective psychotherapies, and embedded into an integrated care system.
Resumo:
Macrophage migration inhibitory factor (MIF) is an important cytokine involved in the regulation of innate immunity and present at increased levels during inflammatory responses. Here we demonstrate that mature blood and tissue neutrophils constitutively express MIF as a cytosolic protein not associated with azurophil granules. Functionally active MIF, but not proteases stored in azurophil granules, was released from apoptotic neutrophils following short term tumor necrosis factor (TNF)-alpha stimulation in a caspase-dependent manner and prior to any detectable phagocytosis by monocyte-derived macrophages. Moreover, TNF-alpha-mediated MIF release was blocked by glyburide and propenicide, both inhibitors of ATP-binding cassette-type transporters, suggesting that this transporter system is activated during neutrophil apoptosis. Taken together, apoptotic mature neutrophils release MIF upon short term TNF-alpha stimulation. Therefore, apoptosis may not always occur without the induction of pro-inflammatory mechanisms.
Resumo:
The purpose of this study was to evaluate the effect of continuously released BDNF on peripheral nerve regeneration in a rat model. Initial in vitro evaluation of calcium alginate prolonged-release-capsules (PRC) proved a consistent release of BDNF for a minimum of 8 weeks. In vivo, a worst case scenario was created by surgical removal of a 20-mm section of the sciatic nerve of the rat. Twenty-four autologous fascia tubes were filled with calcium alginate spheres and sutured to the epineurium of both nerve ends. The animals were divided into 3 groups. In group 1, the fascial tube contained plain calcium alginate spheres. In groups 2 and 3, the fascial tube contained calcium alginate spheres with BDNF alone or BDNF stabilized with bovine serum albumin, respectively. The autocannibalization of the operated extremity was clinically assessed and documented in 12 additional rats. The regeneration was evaluated histologically at 4 weeks and 10 weeks in a blinded manner. The length of nerve fibers and the numbers of axons formed in the tube was measured. Over a 10-week period, axons have grown significantly faster in groups 2 and 3 with continuously released BDNF compared to the control. The rats treated with BDNF (groups 2 and 3) demonstrated significantly less autocannibalization than the control group (group 1). These results suggest that BDNF may not only stimulate faster peripheral nerve regeneration provided there is an ideal, biodegradable continuous delivery system but that it significantly reduces the neuropathic pain in the rat model.
Resumo:
AIM: This pilot study seeks to determine whether contact system activation (CSA) occurs in human sepsis patients and to characterise blood levels of the 47kD light chain of high-molecular weight kininogen (47kD HK). METHODS: Six consecutive patients with clinical suspicion of sepsis were evaluated on days 1, 2, 3 and 6-8 for 47kD HK blood levels expressed in U/ml of whole blood and as percent of total HK. 47kD HK was measured in whole blood by quantitative immunoblot analysis. RESULTS: On study day 1 or 2, analysis of 47kD HK in U/ml of whole blood identified CSA in 3/6 patients.When 47kD HK levels were expressed as percent of total HK, 4/6 patients were identified with CSA before day 3. The degree of CSA as assayed by the presence of 47kD HK correlated with the severity of the systemic inflammatory syndrome (SIRS), i.e. mean CSA increased progressively from basal levels in healthy controls (0.08 U/ml or 10.4%) to patients without SIRS (0.10 U/ml or 15.1%), to patients with sepsis (0.12 U/ml or 15.0%), and finally to patients in a combined category of severe sepsis and septic shock (0.13 U/ml or 17.4%). CONCLUSION: CSA, defined by increased 47kD HK, occurred early on in the course of sepsis in a subset of sepsis patients. 47kD HK levels, an indicator of bradykinin release, correlated with sepsis severity. Future larger studies will need to evaluate the role of 47kD HK as a biomarker for both prognosis and treatment response in human sepsis..
Resumo:
Although eosinophils are considered useful in defense mechanisms against parasites, their exact function in innate immunity remains unclear. The aim of this study is to better understand the role of eosinophils within the gastrointestinal immune system. We show here that lipopolysaccharide from Gram-negative bacteria activates interleukin-5 (IL-5)- or interferon-gamma-primed eosinophils to release mitochondrial DNA in a reactive oxygen species-dependent manner, but independent of eosinophil death. Notably, the process of DNA release occurs rapidly in a catapult-like manner--in less than one second. In the extracellular space, the mitochondrial DNA and the granule proteins form extracellular structures able to bind and kill bacteria both in vitro and under inflammatory conditions in vivo. Moreover, after cecal ligation and puncture, Il5-transgenic but not wild-type mice show intestinal eosinophil infiltration and extracellular DNA deposition in association with protection against microbial sepsis. These data suggest a previously undescribed mechanism of eosinophil-mediated innate immune responses that might be crucial for maintaining the intestinal barrier function after inflammation-associated epithelial cell damage, preventing the host from uncontrolled invasion of bacteria.
Resumo:
BACKGROUND Stroke is a major cause of morbidity and mortality during open-heart surgery. Up to 60% of intraoperative cerebral events are emboli induced. This randomized, controlled, multicenter trial is the first human study evaluating the safety and efficacy of a novel aortic cannula producing simultaneous forward flow and backward suction for extracting solid and gaseous emboli from the ascending aorta and aortic arch upon their intraoperative release. METHODS Sixty-six patients (25 females; 68±10 years) undergoing elective aortic valve replacement surgery, with or without coronary artery bypass graft surgery, were randomized to the use of the CardioGard (CardioGard Medical, Or-Yehuda, Israel) Emboli Protection cannula ("treatment") or a standard ("control") aortic cannula. The primary endpoint was the volume of new brain lesions measured by diffusion-weighted magnetic resonance imaging (DW-MRI), performed preoperatively and postoperatively. Device safety was investigated by comparisons of complications rate, namely neurologic events, stroke, renal insufficiency and death. RESULTS Of 66 patients (34 in the treatment group), 51 completed the presurgery and postsurgery MRI (27 in the treatment group). The volume of new brain lesion for the treatment group was (mean±standard error of the mean) 44.00±64.00 versus 126.56±28.74 mm3 in the control group (p=0.004). Of the treatment group, 41% demonstrated new postoperative lesions versus 66% in the control group (p=0.03). The complication rate was comparable in both groups. CONCLUSIONS The CardioGard cannula is safe and efficient in use during open-heart surgery. Efficacy was demonstrated by the removal of a substantial amount of emboli, a significant reduction in the volume of new brain lesions, and the percentage of patients experiencing new brain lesions.
Resumo:
The presented approach describes a model for a rule-based expert system calculating the temporal variability of the release of wet snow avalanches, using the assumption of avalanche triggering without the loading of new snow. The knowledge base of the model is created by using investigations on the system behaviour of wet snow avalanches in the Italian Ortles Alps, and is represented by a fuzzy logic rule-base. Input parameters of the expert system are numerical and linguistic variables, measurable meteorological and topographical factors and observable characteristics of the snow cover. Output of the inference method is the quantified release disposition for wet snow avalanches. Combining topographical parameters and the spatial interpolation of the calculated release disposition a hazard index map is dynamically generated. Furthermore, the spatial and temporal variability of damage potential on roads exposed to wet snow avalanches can be quantified, expressed by the number of persons at risk. The application of the rule base to the available data in the study area generated plausible results. The study demonstrates the potential for the application of expert systems and fuzzy logic in the field of natural hazard monitoring and risk management.
Resumo:
• Background and Aims The uptake, translocation and redistribution of the heavy metals zinc, manganese, nickel, cobalt and cadmium are relevant for plant nutrition as well as for the quality of harvested plant products. The long-distance transport of these heavy metals within the root system and the release to the shoot in young wheat (Triticum aestivum ‘Arina’) plants were investigated. • Methods After the application of 65Zn, 54Mn, 63Ni, 57Co and 109Cd for 24 h to one seminal root (the other seminal roots being excised) of 54-h-old wheat seedlings, the labelled plants were incubated for several days in hydroponic culture on a medium without radionuclides. • Key Results The content of 65Zn decreased quickly in the labelled part of the root. After the transfer of 65Zn from the roots to the shoot, a further redistribution in the phloem from older to younger leaves was observed. In contrast to 65Zn, 109Cd was released more slowly from the roots to the leaves and was subsequently redistributed in the phloem to the youngest leaves only at trace levels. The content of 63Ni decreased quickly in the labelled part of the root, moving to the newly formed parts of the root system and also accumulating transiently in the expanding leaves. The 54Mn content decreased quickly in the labelled part of the root and increased simultaneously in leaf 1. A strong retention in the labelled part of the root was observed after supplying 57Co. • Conclusions The dynamics of redistribution of 65Zn, 54Mn, 63Ni, 57Co and 109Cd differed considerably. The rapid redistribution of 63Ni from older to younger leaves throughout the experiment indicated a high mobility in the phloem, while 54Mn was mobile only in the xylem and 57Co was retained in the labelled root without being loaded into the xylem.
A Metalloproteinase Mirolysin of Tannerella forsythia Inhibits All Pathways of the Complement System
Resumo:
Recent reports focusing on virulence factors of periodontal pathogens implicated proteinases as major determinants of remarkable pathogenicity of these species, with special emphasis on their capacity to modulate complement activity. In particular, bacteria-mediated cleavage of C5 and subsequent release of C5a seems to be an important phenomenon in the manipulation of the local inflammatory response in periodontitis. In this study, we present mirolysin, a novel metalloproteinase secreted by Tannerella forsythia, a well-recognized pathogen strongly associated with periodontitis. Mirolysin exhibited a strong effect on all complement pathways. It inhibited the classical and lectin complement pathways due to efficient degradation of mannose-binding lectin, ficolin-2, ficolin-3, and C4, whereas inhibition of the alternative pathway was caused by degradation of C5. This specificity toward complement largely resembled the activity of a previously characterized metalloproteinase of T. forsythia, karilysin. Interestingly, mirolysin released the biologically active C5a peptide in human plasma and induced migration of neutrophils. Importantly, we demonstrated that combination of mirolysin with karilysin, as well as a cysteine proteinase of another periodontal pathogen, Prevotella intermedia, resulted in a strong synergistic effect on complement. Furthermore, mutant strains of T. forsythia, devoid of either mirolysin or karilysin, showed diminished survival in human serum, providing further evidence for the synergistic inactivation of complement by these metalloproteinases. Taken together, our findings on interactions of mirolysin with complement significantly add to the understanding of immune evasion strategies of T. forsythia and expand the knowledge on molecular mechanisms driving pathogenic events in the infected periodontium.