23 resultados para Relativistic dissipative hydrodynamics

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct the theory of dissipative hydrodynamics of uncharged fluids living on embedded space-time surfaces to first order in a derivative expansion in the case of codimension-1 surfaces (including fluid membranes) and the theory of non-dissipative hydrodynamics to second order in a derivative expansion in the case of codimension higher than one under the assumption of no angular momenta in transverse directions to the surface. This construction includes the elastic degrees of freedom, and hence the corresponding transport coefficients, that take into account transverse fluctuations of the geometry where the fluid lives. Requiring the second law of thermodynamics to be satisfied leads us to conclude that in the case of codimension-1 surfaces the stress-energy tensor is characterized by 2 hydrodynamic and 1 elastic independent transport coefficient to first order in the expansion while for codimension higher than one, and for non-dissipative flows, the stress-energy tensor is characterized by 7 hydrodynamic and 3 elastic independent transport coefficients to second order in the expansion. Furthermore, the constraints imposed between the stress-energy tensor, the bending moment and the entropy current of the fluid by these extra non-dissipative contributions are fully captured by equilibrium partition functions. This analysis constrains the Young modulus which can be measured from gravity by elastically perturbing black branes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the transition from unitary to dissipative dynamics in the relativistic O(N) vector model with the λ(φ2)2 interaction using the nonperturbative functional renormalization group in the real-time formalism. In thermal equilibrium, the theory is characterized by two scales, the interaction range for coherent scattering of particles and the mean free path determined by the rate of incoherent collisions with excitations in the thermal medium. Their competition determines the renormalization group flow and the effective dynamics of the model. Here we quantify the dynamic properties of the model in terms of the scale-dependent dynamic critical exponent z in the limit of large temperatures and in 2≤d≤4 spatial dimensions. We contrast our results to the behavior expected at vanishing temperature and address the question of the appropriate dynamic universality class for the given microscopic theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently the issue of radiative corrections to leptogenesis has been raised. Considering the "strong washout" regime, in which OPE-techniques permit to streamline the setup, we report the thermal self-energy matrix of heavy right-handed neutrinos at NLO (resummed 2-loop level) in Standard Model couplings. The renormalized expression describes flavour transitions and "inclusive" decays of chemically decoupled right-handed neutrinos. Although CP-violation is not addressed, the result may find use in existing leptogenesis frameworks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production rate of right-handed neutrinos from a Standard Model plasma at a temperature above a hundred GeV is evaluated up to NLO in Standard Model couplings. The results apply in the so-called relativistic regime, referring parametrically to a mass M ~ πT, generalizing thereby previous NLO results which only apply in the non-relativistic regime M ≫ πT. The non-relativistic expansion is observed to converge for M ≳ 15T, but the smallness of any loop corrections allows it to be used in practice already for M ≳ 4T. In the latter regime any non-covariant dependence of the differential rate on the spatial momentum is shown to be mild. The loop expansion breaks down in the ultrarelativistic regime M ≪ πT, but after a simple mass resummation it nevertheless extrapolates reasonably well towards a result obtained previously through complete LPM resummation, apparently confirming a strong enhancement of the rate at high temperatures (which facilitates chemical equilibration). When combined with other ingredients the results may help to improve upon the accuracy of leptogenesis computations operating above the electroweak scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engineers are confronted with the energy demand of active medical implants in patients with increasing life expectancy. Scavenging energy from the patient’s body is envisioned as an alternative to conventional power sources. Joining in this effort towards human-powered implants, we propose an innovative concept that combines the deformation of an artery resulting from the arterial pressure pulse with a transduction mechanism based on magneto-hydrodynamics. To overcome certain limitations of a preliminary analytical study on this topic, we demonstrate here a more accurate model of our generator by implementing a three-dimensional multiphysics finite element method (FEM) simulation combining solid mechanics, fluid mechanics, electric and magnetic fields as well as the corresponding couplings. This simulation is used to optimize the generator with respect to several design parameters. A first validation is obtained by comparing the results of the FEM simulation with those of the analytical approach adopted in our previous study. With an expected overall conversion efficiency of 20% and an average output power of 30 μW, our generator outperforms previous devices based on arterial wall deformation by more than two orders of magnitude. Most importantly, our generator provides sufficient power to supply a cardiac pacemaker.