3 resultados para Relations net

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a missing link between tree physiological and wood-anatomical knowledge which makes it impossible mechanistically to explain and predict the radial growth of individual trees from climate data. Empirical data of microclimatic factors, intra-annual growth rates, and tree-specific ratios between actual and potential transpiration (T PET−1) of trees of three species (Quercus pubescens, Pinus sylvestris, and Picea abies) at two dry sites in the central Wallis, Switzerland, were recorded from 2002 to 2004 at a 10 min resolution. This included the exceptionally hot and dry summer of 2003. These data were analysed in terms of direct (current conditions) and indirect impacts (predispositions of the past year) on growth. Rain was found to be the only factor which, to a large extent, consistently explained the radial increment for all three tree species at both sites and in the short term as well. Other factors had some explanatory power on the seasonal time-scale only. Quercus pubescens built up much of its tree ring before bud break. Pinus sylvestris and Picea abies started radial growth 1–2 weeks after Quercus pubescens and this was despite the fact that they had a high T PET−1 before budburst and radial growth started. A high T PET−1 was assumed to be related to open stomata, a very high net CO2 assimilation rate, and thus a potential carbon (C)-income for the tree. The main period of radial growth covered about 30–70% of the productive days of a year. In terms of C-allocation, these results mean that Quercus pubescens depended entirely on internal C-stores in the early phase of radial growth and that for all three species there was a long time period of C-assimilation which was not used for radial growth in above-ground wood. The results further suggest a strong dependence of radial growth on the current tree water relations and only secondarily on the C-balance. A concept is discussed which links radial growth over a feedback loop to actual tree water-relations and long-term affected C-storage to microclimate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grassland is an important ecosystem type which is not only used agriculturally, but also covers sites which cannot be used for other purposes, e.g. in very steep locations or above timberlines. Prolonged summer droughts in the mid-term future, as are predicted for Central Europe, are expected to have a major impact on such ecosystems. To address this topic, rainfall exclusion via shelters was performed on three grassland sites at different altitudes (393, 982 and 1978 m above sea level) in Switzerland. Diurnal drought treatment effects were studied at each study site on a completely sunny day towards the end of an 8–10 week shelter period. Ecophysiological parameters including gas exchange (An, gs and intrinsic WUE) and chlorophyll a fluorescence (Fv/Fm, ΦPSII and NPQ) were considered for several species. The lowland and the Alpine field site were more strongly affected by soil drought than the pre-Alpine site. At all sites, grasses showed different patterns of reductions in stomatal conductance under soil drought compared to legumes and forbs. In addition, grasses were significantly more affected by reductions in assimilation rates at all sites. Time courses of reductions in assimilation rates relative to controls differed between species at the Alpine site, as some species showed reduced assimilation rates at this site in the early morning. Thus, similar rainfall exclusion treatments can trigger different reactions in various species at different sites, which might not become obvious during mere midday measurements. Overall, results suggest strong impacts of prolonged summer drought on grassland net photosynthesis especially at the Alpine site and, within sites, for grasses