27 resultados para Relational Demography
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
P>1. There are a number of models describing population structure, many of which have the capacity to incorporate spatial habitat effects. One such model is the source-sink model, that describes a system where some habitats have a natality that is higher than mortality (source) and others have a mortality that exceeds natality (sink). A source can be maintained in the absence of migration, whereas a sink will go extinct. 2. However, the interaction between population dynamics and habitat quality is complex, and concerns have been raised about the validity of published empirical studies addressing source-sink dynamics. In particular, some of these studies fail to provide data on survival, a significant component in disentangling a sink from a low quality source. Moreover, failing to account for a density-dependent increase in mortality, or decrease in fecundity, can result in a territory being falsely assigned as a sink, when in fact, this density-dependent suppression only decreases the population size to a lower level, hence indicating a 'pseudo-sink'. 3. In this study, we investigate a long-term data set for key components of territory-specific demography (mortality and reproduction) and their relationship to habitat characteristics in the territorial, group-living Siberian jay (Perisoreus infaustus). We also assess territory-specific population growth rates (r), to test whether spatial population dynamics are consistent with the ideas of source-sink dynamics. 4. Although average mortality did not differ between sexes, habitat-specific mortality did. Female mortality was higher in older forests, a pattern not observed in males. Male mortality only increased with an increasing amount of open areas. Moreover, reproductive success was higher further away from human settlement, indicating a strong effect of human-associated nest predators. 5. Averaged over all years, 76% of the territories were sources. These territories generally consisted of less open areas, and were located further away from human settlement. 6. The source-sink model provides a tool for modelling demography in distinct habitat patches of different quality, which can aid in identifying key habitats within the landscape, and thus, reduce the risk of implementing unsound management decisions.
Evolutionary demography of long-lived monocarpic perennials: a time-lagged integral projection model
Resumo:
1. The evolution of flowering strategies (when and at what size to flower) in monocarpic perennials is determined by balancing current reproduction with expected future reproduction, and these are largely determined by size-specific patterns of growth and survival. However, because of the difficulty in following long-lived individuals throughout their lives, this theory has largely been tested using short-lived species (< 5 years). 2. Here, we tested this theory using the long-lived monocarpic perennial Campanula thyrsoides which can live up to 16 years. We used a novel approach that combined permanent plot and herb chronology data from a 3-year field study to parameterize and validate integral projection models (IPMs). 3. Similar to other monocarpic species, the rosette leaves of C. thyrsoides wither over winter and so size cannot be measured in the year of flowering. We therefore extended the existing IPM framework to incorporate an additional time delay that arises because flowering demography must be predicted from rosette size in the year before flowering. 4. We found that all main demographic functions (growth, survival probability, flowering probability and fecundity) were strongly size-dependent and there was a pronounced threshold size of flowering. There was good agreement between the predicted distribution of flowering ages obtained from the IPMs and that estimated in the field. Mostly, there was good agreement between the IPM predictions and the direct quantitative field measurements regarding the demographic parameters lambda, R-0 and T. We therefore conclude that the model captures the main demographic features of the field populations. 5. Elasticity analysis indicated that changes in the survival and growth function had the largest effect (c. 80%) on lambda and this was considerably larger than in short-lived monocarps. We found only weak selection pressure operating on the observed flowering strategy which was close to the predicted evolutionary stable strategy. 6. Synthesis. The extended IPM accurately described the demography of a long-lived monocarpic perennial using data collected over a relatively short period. We could show that the evolution of flowering strategies in short- and long-lived monocarps seem to follow the same general rules but with a longevity-related emphasis on survival over fecundity.