5 resultados para Registrations

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose Accurate three-dimensional (3D) models of lumbar vertebrae can enable image-based 3D kinematic analysis. The common approach to derive 3D models is by direct segmentation of CT or MRI datasets. However, these have the disadvantages that they are expensive, timeconsuming and/or induce high-radiation doses to the patient. In this study, we present a technique to automatically reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image. Methods Our technique is based on a hybrid 2D/3D deformable registration strategy combining a landmark-to-ray registration with a statistical shape model-based 2D/3D reconstruction scheme. Fig. 1 shows different stages of the reconstruction process. Four cadaveric lumbar spine segments (total twelve lumbar vertebrae) were used to validate the technique. To evaluate the reconstruction accuracy, the surface models reconstructed from the lateral fluoroscopic images were compared to the associated ground truth data derived from a 3D CT-scan reconstruction technique. For each case, a surface-based matching was first used to recover the scale and the rigid transformation between the reconstructed surface model Results Our technique could successfully reconstruct 3D surface models of all twelve vertebrae. After recovering the scale and the rigid transformation between the reconstructed surface models and the ground truth models, the average error of the 2D/3D surface model reconstruction over the twelve lumbar vertebrae was found to be 1.0 mm. The errors of reconstructing surface models of all twelve vertebrae are shown in Fig. 2. It was found that the mean errors of the reconstructed surface models in comparison to their associated ground truths after iterative scaled rigid registrations ranged from 0.7 mm to 1.3 mm and the rootmean squared (RMS) errors ranged from 1.0 mm to 1.7 mm. The average mean reconstruction error was found to be 1.0 mm. Conclusion An accurate, scaled 3D reconstruction of the lumbar vertebra can be obtained from a single lateral fluoroscopic image using a statistical shape model based 2D/3D reconstruction technique. Future work will focus on applying the reconstructed model for 3D kinematic analysis of lumbar vertebrae, an extension of our previously-reported imagebased kinematic analysis. The developed method also has potential applications in surgical planning and navigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Persons with Down syndrome (DS) uniquely have an increased frequency of leukemias but a decreased total frequency of solid tumors. The distribution and frequency of specific types of brain tumors have never been studied in DS. We evaluated the frequency of primary neural cell embryonal tumors and gliomas in a large international data set. The observed number of children with DS having a medulloblastoma, central nervous system primitive neuroectodermal tumor (CNS-PNET) or glial tumor was compared to the expected number. Data were collected from cancer registries or brain tumor registries in 13 countries of Europe, America, Asia and Oceania. The number of DS children with each category of tumor was treated as a Poisson variable with mean equal to 0.000884 times the total number of registrations in that category. Among 8,043 neural cell embryonal tumors (6,882 medulloblastomas and 1,161 CNS-PNETs), only one patient with medulloblastoma had DS, while 7.11 children in total and 6.08 with medulloblastoma were expected to have DS. (p 0.016 and 0.0066 respectively). Among 13,797 children with glioma, 10 had DS, whereas 12.2 were expected. Children with DS appear to be specifically protected against primary neural cell embryonal tumors of the CNS, whereas gliomas occur at the same frequency as in the general population. A similar protection against neuroblastoma, the principal extracranial neural cell embryonal tumor, has been observed in children with DS. Additional genetic material on the supernumerary chromosome 21 may protect against embryonal neural cell tumor development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the issue of matching statistical and non-rigid shapes, and introduces an Expectation Conditional Maximization-based deformable shape registration (ECM-DSR) algorithm. Similar to previous works, we cast the statistical and non-rigid shape registration problem into a missing data framework and handle the unknown correspondences with Gaussian Mixture Models (GMM). The registration problem is then solved by fitting the GMM centroids to the data. But unlike previous works where equal isotropic covariances are used, our new algorithm uses heteroscedastic covariances whose values are iteratively estimated from the data. A previously introduced virtual observation concept is adopted here to simplify the estimation of the registration parameters. Based on this concept, we derive closed-form solutions to estimate parameters for statistical or non-rigid shape registrations in each iteration. Our experiments conducted on synthesized and real data demonstrate that the ECM-DSR algorithm has various advantages over existing algorithms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term electrocardiography (ECG) featuring adequate atrial and ventricular signal quality is highly desirable. Routinely used surface leads are limited in atrial signal sensitivity and recording capability impeding complete ECG delineation, i.e. in the presence of supraventricular arrhythmias. Long-term esophageal ECG might overcome these limitations but requires a dedicated lead system and recorder design. To this end, we analysed multiple-lead esophageal ECGs with respect to signal quality by describing the ECG waves as a function of the insertion level, interelectrode distance, electrode shape and amplifier's input range. The results derived from clinical data show that two bipolar esophageal leads, an atrial lead with short (15 mm) interelectrode distance and a ventricular lead with long (80 mm) interelectrode distance provide non-inferior ventricular signal strength and superior atrial signal strength compared to standard surface lead II. High atrial signal slope in particular is observed with the atrial esophageal lead. The proposed esophageal lead system in combination with an increased recorder input range of ±20 mV minimizes signal loss due to excessive electrode motion typically observed in esophageal ECGs. The design proposal might help to standardize long-term esophageal ECG registrations and facilitate novel ECG classification systems based on the independent detection of ventricular and atrial electrical activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE The aim of this study was to elucidate the relationship between the echogenicity of carotid artery plaques and the following risk factors: circulating oxLDL, hsCRP, the metabolic syndrome (MetS), and several of the traditional cardiovascular (CV) risk factors. MATERIAL AND METHODS A cross-sectional population-based study of 513 sixty-one-year-old men. The levels of circulating oxLDL were determined in plasma samples by sandwich ELISA utilizing a specific murine monoclonal antibody (mAb-4E6). High-sensitivity CRP was measured in plasma by ELISA. Plaque occurrence, size and echogenicity were evaluated from B-mode ultrasound registrations in the carotid arteries. Plaque echogenicity was assessed based on a four-graded classification scale. RESULTS A higher frequency of echolucent carotid plaques was observed with increasing levels of oxLDL and systolic blood pressure (p = 0.008 and p = 0.041, respectively). Subjects with the MetS had a significantly higher frequency of echogenic plaques than subjects without the MetS (p = 0.009). In a multiple logistic regression analysis, oxLDL turned out to be independently associated with echolucent carotid plaques. CONCLUSIONS The occurrence of echolucent carotid plaques was associated with oxLDL and systolic blood pressure, and oxLDL was associated with echolucent carotid plaques independently of systolic blood pressure.